Cargando…

Promoting Persistent Superionic Conductivity in Sodium Monocarba-closo-dodecaborate NaCB(11)H(12) via Confinement within Nanoporous Silica

[Image: see text] Superionic phases of bulk anhydrous salts based on large cluster-like polyhedral (carba)borate anions are generally stable only well above room temperature, rendering them unsuitable as solid-state electrolytes in energy-storage devices that typically operate at close to room tempe...

Descripción completa

Detalles Bibliográficos
Autores principales: Andersson, Mikael S., Stavila, Vitalie, Skripov, Alexander V., Dimitrievska, Mirjana, Psurek, Malgorzata T., Leão, Juscelino B., Babanova, Olga A., Skoryunov, Roman V., Soloninin, Alexei V., Karlsson, Maths, Udovic, Terrence J.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Chemical Society 2021
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8392346/
https://www.ncbi.nlm.nih.gov/pubmed/34476037
http://dx.doi.org/10.1021/acs.jpcc.1c03589
_version_ 1783743481723748352
author Andersson, Mikael S.
Stavila, Vitalie
Skripov, Alexander V.
Dimitrievska, Mirjana
Psurek, Malgorzata T.
Leão, Juscelino B.
Babanova, Olga A.
Skoryunov, Roman V.
Soloninin, Alexei V.
Karlsson, Maths
Udovic, Terrence J.
author_facet Andersson, Mikael S.
Stavila, Vitalie
Skripov, Alexander V.
Dimitrievska, Mirjana
Psurek, Malgorzata T.
Leão, Juscelino B.
Babanova, Olga A.
Skoryunov, Roman V.
Soloninin, Alexei V.
Karlsson, Maths
Udovic, Terrence J.
author_sort Andersson, Mikael S.
collection PubMed
description [Image: see text] Superionic phases of bulk anhydrous salts based on large cluster-like polyhedral (carba)borate anions are generally stable only well above room temperature, rendering them unsuitable as solid-state electrolytes in energy-storage devices that typically operate at close to room temperature. To unlock their technological potential, strategies are needed to stabilize these superionic properties down to subambient temperatures. One such strategy involves altering the bulk properties by confinement within nanoporous insulators. In the current study, the unique structural and ion dynamical properties of an exemplary salt, NaCB(11)H(12), nanodispersed within porous, high-surface-area silica via salt-solution infiltration were studied by differential scanning calorimetry, X-ray powder diffraction, neutron vibrational spectroscopy, nuclear magnetic resonance, quasielastic neutron scattering, and impedance spectroscopy. Combined results hint at the formation of a nanoconfined phase that is reminiscent of the high-temperature superionic phase of bulk NaCB(11)H(12), with dynamically disordered CB(11)H(12)(–) anions exhibiting liquid-like reorientational mobilities. However, in contrast to this high-temperature bulk phase, the nanoconfined NaCB(11)H(12) phase with rotationally fluid anions persists down to cryogenic temperatures. Moreover, the high anion mobilities promoted fast-cation diffusion, yielding Na(+) superionic conductivities of ∼0.3 mS/cm at room temperature, with higher values likely attainable via future optimization. It is expected that this successful strategy for conductivity enhancement could be applied as well to other related polyhedral (carba)borate-based salts. Thus, these results present a new route to effectively utilize these types of superionic salts as solid-state electrolytes in future battery applications.
format Online
Article
Text
id pubmed-8392346
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher American Chemical Society
record_format MEDLINE/PubMed
spelling pubmed-83923462021-08-31 Promoting Persistent Superionic Conductivity in Sodium Monocarba-closo-dodecaborate NaCB(11)H(12) via Confinement within Nanoporous Silica Andersson, Mikael S. Stavila, Vitalie Skripov, Alexander V. Dimitrievska, Mirjana Psurek, Malgorzata T. Leão, Juscelino B. Babanova, Olga A. Skoryunov, Roman V. Soloninin, Alexei V. Karlsson, Maths Udovic, Terrence J. J Phys Chem C Nanomater Interfaces [Image: see text] Superionic phases of bulk anhydrous salts based on large cluster-like polyhedral (carba)borate anions are generally stable only well above room temperature, rendering them unsuitable as solid-state electrolytes in energy-storage devices that typically operate at close to room temperature. To unlock their technological potential, strategies are needed to stabilize these superionic properties down to subambient temperatures. One such strategy involves altering the bulk properties by confinement within nanoporous insulators. In the current study, the unique structural and ion dynamical properties of an exemplary salt, NaCB(11)H(12), nanodispersed within porous, high-surface-area silica via salt-solution infiltration were studied by differential scanning calorimetry, X-ray powder diffraction, neutron vibrational spectroscopy, nuclear magnetic resonance, quasielastic neutron scattering, and impedance spectroscopy. Combined results hint at the formation of a nanoconfined phase that is reminiscent of the high-temperature superionic phase of bulk NaCB(11)H(12), with dynamically disordered CB(11)H(12)(–) anions exhibiting liquid-like reorientational mobilities. However, in contrast to this high-temperature bulk phase, the nanoconfined NaCB(11)H(12) phase with rotationally fluid anions persists down to cryogenic temperatures. Moreover, the high anion mobilities promoted fast-cation diffusion, yielding Na(+) superionic conductivities of ∼0.3 mS/cm at room temperature, with higher values likely attainable via future optimization. It is expected that this successful strategy for conductivity enhancement could be applied as well to other related polyhedral (carba)borate-based salts. Thus, these results present a new route to effectively utilize these types of superionic salts as solid-state electrolytes in future battery applications. American Chemical Society 2021-07-26 2021-08-05 /pmc/articles/PMC8392346/ /pubmed/34476037 http://dx.doi.org/10.1021/acs.jpcc.1c03589 Text en © 2021 The Authors. Published by American Chemical Society https://creativecommons.org/licenses/by/4.0/Permits the broadest form of re-use including for commercial purposes, provided that author attribution and integrity are maintained (https://creativecommons.org/licenses/by/4.0/).
spellingShingle Andersson, Mikael S.
Stavila, Vitalie
Skripov, Alexander V.
Dimitrievska, Mirjana
Psurek, Malgorzata T.
Leão, Juscelino B.
Babanova, Olga A.
Skoryunov, Roman V.
Soloninin, Alexei V.
Karlsson, Maths
Udovic, Terrence J.
Promoting Persistent Superionic Conductivity in Sodium Monocarba-closo-dodecaborate NaCB(11)H(12) via Confinement within Nanoporous Silica
title Promoting Persistent Superionic Conductivity in Sodium Monocarba-closo-dodecaborate NaCB(11)H(12) via Confinement within Nanoporous Silica
title_full Promoting Persistent Superionic Conductivity in Sodium Monocarba-closo-dodecaborate NaCB(11)H(12) via Confinement within Nanoporous Silica
title_fullStr Promoting Persistent Superionic Conductivity in Sodium Monocarba-closo-dodecaborate NaCB(11)H(12) via Confinement within Nanoporous Silica
title_full_unstemmed Promoting Persistent Superionic Conductivity in Sodium Monocarba-closo-dodecaborate NaCB(11)H(12) via Confinement within Nanoporous Silica
title_short Promoting Persistent Superionic Conductivity in Sodium Monocarba-closo-dodecaborate NaCB(11)H(12) via Confinement within Nanoporous Silica
title_sort promoting persistent superionic conductivity in sodium monocarba-closo-dodecaborate nacb(11)h(12) via confinement within nanoporous silica
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8392346/
https://www.ncbi.nlm.nih.gov/pubmed/34476037
http://dx.doi.org/10.1021/acs.jpcc.1c03589
work_keys_str_mv AT anderssonmikaels promotingpersistentsuperionicconductivityinsodiummonocarbaclosododecaboratenacb11h12viaconfinementwithinnanoporoussilica
AT stavilavitalie promotingpersistentsuperionicconductivityinsodiummonocarbaclosododecaboratenacb11h12viaconfinementwithinnanoporoussilica
AT skripovalexanderv promotingpersistentsuperionicconductivityinsodiummonocarbaclosododecaboratenacb11h12viaconfinementwithinnanoporoussilica
AT dimitrievskamirjana promotingpersistentsuperionicconductivityinsodiummonocarbaclosododecaboratenacb11h12viaconfinementwithinnanoporoussilica
AT psurekmalgorzatat promotingpersistentsuperionicconductivityinsodiummonocarbaclosododecaboratenacb11h12viaconfinementwithinnanoporoussilica
AT leaojuscelinob promotingpersistentsuperionicconductivityinsodiummonocarbaclosododecaboratenacb11h12viaconfinementwithinnanoporoussilica
AT babanovaolgaa promotingpersistentsuperionicconductivityinsodiummonocarbaclosododecaboratenacb11h12viaconfinementwithinnanoporoussilica
AT skoryunovromanv promotingpersistentsuperionicconductivityinsodiummonocarbaclosododecaboratenacb11h12viaconfinementwithinnanoporoussilica
AT solonininalexeiv promotingpersistentsuperionicconductivityinsodiummonocarbaclosododecaboratenacb11h12viaconfinementwithinnanoporoussilica
AT karlssonmaths promotingpersistentsuperionicconductivityinsodiummonocarbaclosododecaboratenacb11h12viaconfinementwithinnanoporoussilica
AT udovicterrencej promotingpersistentsuperionicconductivityinsodiummonocarbaclosododecaboratenacb11h12viaconfinementwithinnanoporoussilica