Cargando…

Toward an Understanding of SEI Formation and Lithium Plating on Copper in Anode-Free Batteries

[Image: see text] “Anode-free” batteries present a significant advantage due to their substantially higher energy density and ease of assembly in a dry air atmosphere. However, issues involving lithium dendrite growth and low cycling Coulombic efficiencies during operation remain to be solved. Solid...

Descripción completa

Detalles Bibliográficos
Autores principales: Menkin, Svetlana, O’Keefe, Christopher A., Gunnarsdóttir, Anna B., Dey, Sunita, Pesci, Federico M., Shen, Zonghao, Aguadero, Ainara, Grey, Clare P.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Chemical Society 2021
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8392351/
https://www.ncbi.nlm.nih.gov/pubmed/34476038
http://dx.doi.org/10.1021/acs.jpcc.1c03877
_version_ 1783743482909687808
author Menkin, Svetlana
O’Keefe, Christopher A.
Gunnarsdóttir, Anna B.
Dey, Sunita
Pesci, Federico M.
Shen, Zonghao
Aguadero, Ainara
Grey, Clare P.
author_facet Menkin, Svetlana
O’Keefe, Christopher A.
Gunnarsdóttir, Anna B.
Dey, Sunita
Pesci, Federico M.
Shen, Zonghao
Aguadero, Ainara
Grey, Clare P.
author_sort Menkin, Svetlana
collection PubMed
description [Image: see text] “Anode-free” batteries present a significant advantage due to their substantially higher energy density and ease of assembly in a dry air atmosphere. However, issues involving lithium dendrite growth and low cycling Coulombic efficiencies during operation remain to be solved. Solid electrolyte interphase (SEI) formation on Cu and its effect on Li plating are studied here to understand the interplay between the Cu current collector surface chemistry and plated Li morphology. A native interphase layer (N-SEI) on the Cu current collector was observed with solid-state nuclear magnetic resonance spectroscopy (ssNMR) and electrochemical impedance spectroscopy (EIS). Cyclic voltammetry (CV) and time-of-flight secondary ion mass spectrometry (ToF-SIMS) studies showed that the nature of the N-SEI is affected by the copper interface composition. An X-ray photoelectron spectroscopy (XPS) study identified a relationship between the applied voltage and SEI composition. In addition to the typical SEI components, the SEI contains copper oxides (Cu(x)O) and their reduction reaction products. Parasitic electrochemical reactions were observed via in situ NMR measurements of Li plating efficiency. Scanning electron microscopy (SEM) studies revealed a correlation between the morphology of the plated Li and the SEI homogeneity, current density, and rest time in the electrolyte before plating. Via ToF-SIMS, we found that the preferential plating of Li on Cu is governed by the distribution of ionically conducting rather than electronic conducting compounds. The results together suggest strategies for mitigating dendrite formation by current collector pretreatment and controlled SEI formation during the first battery charge.
format Online
Article
Text
id pubmed-8392351
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher American Chemical Society
record_format MEDLINE/PubMed
spelling pubmed-83923512021-08-31 Toward an Understanding of SEI Formation and Lithium Plating on Copper in Anode-Free Batteries Menkin, Svetlana O’Keefe, Christopher A. Gunnarsdóttir, Anna B. Dey, Sunita Pesci, Federico M. Shen, Zonghao Aguadero, Ainara Grey, Clare P. J Phys Chem C Nanomater Interfaces [Image: see text] “Anode-free” batteries present a significant advantage due to their substantially higher energy density and ease of assembly in a dry air atmosphere. However, issues involving lithium dendrite growth and low cycling Coulombic efficiencies during operation remain to be solved. Solid electrolyte interphase (SEI) formation on Cu and its effect on Li plating are studied here to understand the interplay between the Cu current collector surface chemistry and plated Li morphology. A native interphase layer (N-SEI) on the Cu current collector was observed with solid-state nuclear magnetic resonance spectroscopy (ssNMR) and electrochemical impedance spectroscopy (EIS). Cyclic voltammetry (CV) and time-of-flight secondary ion mass spectrometry (ToF-SIMS) studies showed that the nature of the N-SEI is affected by the copper interface composition. An X-ray photoelectron spectroscopy (XPS) study identified a relationship between the applied voltage and SEI composition. In addition to the typical SEI components, the SEI contains copper oxides (Cu(x)O) and their reduction reaction products. Parasitic electrochemical reactions were observed via in situ NMR measurements of Li plating efficiency. Scanning electron microscopy (SEM) studies revealed a correlation between the morphology of the plated Li and the SEI homogeneity, current density, and rest time in the electrolyte before plating. Via ToF-SIMS, we found that the preferential plating of Li on Cu is governed by the distribution of ionically conducting rather than electronic conducting compounds. The results together suggest strategies for mitigating dendrite formation by current collector pretreatment and controlled SEI formation during the first battery charge. American Chemical Society 2021-07-27 2021-08-05 /pmc/articles/PMC8392351/ /pubmed/34476038 http://dx.doi.org/10.1021/acs.jpcc.1c03877 Text en © 2021 The Authors. Published by American Chemical Society https://creativecommons.org/licenses/by/4.0/Permits the broadest form of re-use including for commercial purposes, provided that author attribution and integrity are maintained (https://creativecommons.org/licenses/by/4.0/).
spellingShingle Menkin, Svetlana
O’Keefe, Christopher A.
Gunnarsdóttir, Anna B.
Dey, Sunita
Pesci, Federico M.
Shen, Zonghao
Aguadero, Ainara
Grey, Clare P.
Toward an Understanding of SEI Formation and Lithium Plating on Copper in Anode-Free Batteries
title Toward an Understanding of SEI Formation and Lithium Plating on Copper in Anode-Free Batteries
title_full Toward an Understanding of SEI Formation and Lithium Plating on Copper in Anode-Free Batteries
title_fullStr Toward an Understanding of SEI Formation and Lithium Plating on Copper in Anode-Free Batteries
title_full_unstemmed Toward an Understanding of SEI Formation and Lithium Plating on Copper in Anode-Free Batteries
title_short Toward an Understanding of SEI Formation and Lithium Plating on Copper in Anode-Free Batteries
title_sort toward an understanding of sei formation and lithium plating on copper in anode-free batteries
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8392351/
https://www.ncbi.nlm.nih.gov/pubmed/34476038
http://dx.doi.org/10.1021/acs.jpcc.1c03877
work_keys_str_mv AT menkinsvetlana towardanunderstandingofseiformationandlithiumplatingoncopperinanodefreebatteries
AT okeefechristophera towardanunderstandingofseiformationandlithiumplatingoncopperinanodefreebatteries
AT gunnarsdottirannab towardanunderstandingofseiformationandlithiumplatingoncopperinanodefreebatteries
AT deysunita towardanunderstandingofseiformationandlithiumplatingoncopperinanodefreebatteries
AT pescifedericom towardanunderstandingofseiformationandlithiumplatingoncopperinanodefreebatteries
AT shenzonghao towardanunderstandingofseiformationandlithiumplatingoncopperinanodefreebatteries
AT aguaderoainara towardanunderstandingofseiformationandlithiumplatingoncopperinanodefreebatteries
AT greyclarep towardanunderstandingofseiformationandlithiumplatingoncopperinanodefreebatteries