Cargando…

Applying Bioinformatic Platforms, In Vitro, and In Vivo Functional Assays in the Characterization of Genetic Variants in the GH/IGF Pathway Affecting Growth and Development

Heritability accounts for over 80% of adult human height, indicating that genetic variability is the main determinant of stature. The rapid technological development of Next-Generation Sequencing (NGS), particularly Whole Exome Sequencing (WES), has resulted in the characterization of several geneti...

Descripción completa

Detalles Bibliográficos
Autores principales: Domené, Sabina, Scaglia, Paula A., Gutiérrez, Mariana L., Domené, Horacio M.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8392544/
https://www.ncbi.nlm.nih.gov/pubmed/34440832
http://dx.doi.org/10.3390/cells10082063
_version_ 1783743528334000128
author Domené, Sabina
Scaglia, Paula A.
Gutiérrez, Mariana L.
Domené, Horacio M.
author_facet Domené, Sabina
Scaglia, Paula A.
Gutiérrez, Mariana L.
Domené, Horacio M.
author_sort Domené, Sabina
collection PubMed
description Heritability accounts for over 80% of adult human height, indicating that genetic variability is the main determinant of stature. The rapid technological development of Next-Generation Sequencing (NGS), particularly Whole Exome Sequencing (WES), has resulted in the characterization of several genetic conditions affecting growth and development. The greatest challenge of NGS remains the high number of candidate variants identified. In silico bioinformatic tools represent the first approach for classifying these variants. However, solving the complicated problem of variant interpretation requires the use of experimental approaches such as in vitro and, when needed, in vivo functional assays. In this review, we will discuss a rational approach to apply to the gene variants identified in children with growth and developmental defects including: (i) bioinformatic tools; (ii) in silico modeling tools; (iii) in vitro functional assays; and (iv) the development of in vivo models. While bioinformatic tools are useful for a preliminary selection of potentially pathogenic variants, in vitro—and sometimes also in vivo—functional assays are further required to unequivocally determine the pathogenicity of a novel genetic variant. This long, time-consuming, and expensive process is the only scientifically proven method to determine causality between a genetic variant and a human genetic disease.
format Online
Article
Text
id pubmed-8392544
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-83925442021-08-28 Applying Bioinformatic Platforms, In Vitro, and In Vivo Functional Assays in the Characterization of Genetic Variants in the GH/IGF Pathway Affecting Growth and Development Domené, Sabina Scaglia, Paula A. Gutiérrez, Mariana L. Domené, Horacio M. Cells Review Heritability accounts for over 80% of adult human height, indicating that genetic variability is the main determinant of stature. The rapid technological development of Next-Generation Sequencing (NGS), particularly Whole Exome Sequencing (WES), has resulted in the characterization of several genetic conditions affecting growth and development. The greatest challenge of NGS remains the high number of candidate variants identified. In silico bioinformatic tools represent the first approach for classifying these variants. However, solving the complicated problem of variant interpretation requires the use of experimental approaches such as in vitro and, when needed, in vivo functional assays. In this review, we will discuss a rational approach to apply to the gene variants identified in children with growth and developmental defects including: (i) bioinformatic tools; (ii) in silico modeling tools; (iii) in vitro functional assays; and (iv) the development of in vivo models. While bioinformatic tools are useful for a preliminary selection of potentially pathogenic variants, in vitro—and sometimes also in vivo—functional assays are further required to unequivocally determine the pathogenicity of a novel genetic variant. This long, time-consuming, and expensive process is the only scientifically proven method to determine causality between a genetic variant and a human genetic disease. MDPI 2021-08-12 /pmc/articles/PMC8392544/ /pubmed/34440832 http://dx.doi.org/10.3390/cells10082063 Text en © 2021 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
spellingShingle Review
Domené, Sabina
Scaglia, Paula A.
Gutiérrez, Mariana L.
Domené, Horacio M.
Applying Bioinformatic Platforms, In Vitro, and In Vivo Functional Assays in the Characterization of Genetic Variants in the GH/IGF Pathway Affecting Growth and Development
title Applying Bioinformatic Platforms, In Vitro, and In Vivo Functional Assays in the Characterization of Genetic Variants in the GH/IGF Pathway Affecting Growth and Development
title_full Applying Bioinformatic Platforms, In Vitro, and In Vivo Functional Assays in the Characterization of Genetic Variants in the GH/IGF Pathway Affecting Growth and Development
title_fullStr Applying Bioinformatic Platforms, In Vitro, and In Vivo Functional Assays in the Characterization of Genetic Variants in the GH/IGF Pathway Affecting Growth and Development
title_full_unstemmed Applying Bioinformatic Platforms, In Vitro, and In Vivo Functional Assays in the Characterization of Genetic Variants in the GH/IGF Pathway Affecting Growth and Development
title_short Applying Bioinformatic Platforms, In Vitro, and In Vivo Functional Assays in the Characterization of Genetic Variants in the GH/IGF Pathway Affecting Growth and Development
title_sort applying bioinformatic platforms, in vitro, and in vivo functional assays in the characterization of genetic variants in the gh/igf pathway affecting growth and development
topic Review
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8392544/
https://www.ncbi.nlm.nih.gov/pubmed/34440832
http://dx.doi.org/10.3390/cells10082063
work_keys_str_mv AT domenesabina applyingbioinformaticplatformsinvitroandinvivofunctionalassaysinthecharacterizationofgeneticvariantsintheghigfpathwayaffectinggrowthanddevelopment
AT scagliapaulaa applyingbioinformaticplatformsinvitroandinvivofunctionalassaysinthecharacterizationofgeneticvariantsintheghigfpathwayaffectinggrowthanddevelopment
AT gutierrezmarianal applyingbioinformaticplatformsinvitroandinvivofunctionalassaysinthecharacterizationofgeneticvariantsintheghigfpathwayaffectinggrowthanddevelopment
AT domenehoraciom applyingbioinformaticplatformsinvitroandinvivofunctionalassaysinthecharacterizationofgeneticvariantsintheghigfpathwayaffectinggrowthanddevelopment