Cargando…

A Security-Enhanced Image Communication Scheme Using Cellular Neural Network

In the current network and big data environment, the secure transmission of digital images is facing huge challenges. The use of some methodologies in artificial intelligence to enhance its security is extremely cutting-edge and also a development trend. To this end, this paper proposes a security-e...

Descripción completa

Detalles Bibliográficos
Autores principales: Wen, Heping, Xu, Jiajun, Liao, Yunlong, Chen, Ruiting, Shen, Danze, Wen, Lifei, Shi, Yulin, Lin, Qin, Liang, Zhonghao, Zhang, Sihang, Liu, Yuxuan, Huo, Ailin, Li, Tong, Cai, Chang, Wen, Jiaqian, Zhang, Chongfu
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8392563/
https://www.ncbi.nlm.nih.gov/pubmed/34441140
http://dx.doi.org/10.3390/e23081000
Descripción
Sumario:In the current network and big data environment, the secure transmission of digital images is facing huge challenges. The use of some methodologies in artificial intelligence to enhance its security is extremely cutting-edge and also a development trend. To this end, this paper proposes a security-enhanced image communication scheme based on cellular neural network (CNN) under cryptanalysis. First, the complex characteristics of CNN are used to create pseudorandom sequences for image encryption. Then, a plain image is sequentially confused, permuted and diffused to get the cipher image by these CNN-based sequences. Based on cryptanalysis theory, a security-enhanced algorithm structure and relevant steps are detailed. Theoretical analysis and experimental results both demonstrate its safety performance. Moreover, the structure of image cipher can effectively resist various common attacks in cryptography. Therefore, the image communication scheme based on CNN proposed in this paper is a competitive security technology method.