Cargando…
Evaluating Classification Consistency of Oral Lesion Images for Use in an Image Classification Teaching Tool
A web-based image classification tool (DiLearn) was developed to facilitate active learning in the oral health profession. Students engage with oral lesion images using swipe gestures to classify each image into pre-determined categories (e.g., left for refer and right for no intervention). To assem...
Autores principales: | Shen, Yuxin, Yoon, Minn N., Ortiz, Silvia, Friesen, Reid, Lai, Hollis |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8392708/ https://www.ncbi.nlm.nih.gov/pubmed/34436006 http://dx.doi.org/10.3390/dj9080094 |
Ejemplares similares
-
Multiclass classification of autofluorescence images of oral cavity lesions based on quantitative analysis
por: Jeng, Ming-Jer, et al.
Publicado: (2020) -
Use of Artificial Intelligence in the Classification of Elementary Oral Lesions from Clinical Images
por: Gomes, Rita Fabiane Teixeira, et al.
Publicado: (2023) -
Automated Skin Lesion Classification on Ultrasound Images
por: Marosán-Vilimszky , Péter, et al.
Publicado: (2021) -
Benign and Malignant Oral Lesion Image Classification Using Fine-Tuned Transfer Learning Techniques
por: Islam, Md. Monirul, et al.
Publicado: (2023) -
Vascular lesions of the head and neck: an update on classification and imaging review
por: Brahmbhatt, Akshaar N., et al.
Publicado: (2020)