Cargando…
High-Dimensional Separability for One- and Few-Shot Learning
This work is driven by a practical question: corrections of Artificial Intelligence (AI) errors. These corrections should be quick and non-iterative. To solve this problem without modification of a legacy AI system, we propose special ‘external’ devices, correctors. Elementary correctors consist of...
Autores principales: | Gorban, Alexander N., Grechuk, Bogdan, Mirkes, Evgeny M., Stasenko, Sergey V., Tyukin, Ivan Y. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8392747/ https://www.ncbi.nlm.nih.gov/pubmed/34441230 http://dx.doi.org/10.3390/e23081090 |
Ejemplares similares
-
High-Dimensional Brain in a High-Dimensional World: Blessing of Dimensionality
por: Gorban, Alexander N., et al.
Publicado: (2020) -
Scikit-Dimension: A Python Package for Intrinsic Dimension Estimation
por: Bac, Jonathan, et al.
Publicado: (2021) -
Domain Adaptation Principal Component Analysis: Base Linear Method for Learning with Out-of-Distribution Data
por: Mirkes, Evgeny M., et al.
Publicado: (2022) -
High-Dimensional Brain: A Tool for Encoding and Rapid Learning of Memories by Single Neurons
por: Tyukin, Ivan, et al.
Publicado: (2018) -
Fractional Norms and Quasinorms Do Not Help to Overcome the Curse of Dimensionality
por: Mirkes, Evgeny M., et al.
Publicado: (2020)