Cargando…
Comparison of Accuracies between Real-Time Nonrigid and Rigid Registration in the MRI–US Fusion Biopsy of the Prostate
Magnetic resonance imaging (MRI) is increasingly important in the detection and localization of prostate cancer. Regarding suspicious lesions on MRI, a targeted biopsy using MRI fused with ultrasound (US) is widely used. To achieve a successful targeted biopsy, a precise registration between MRI and...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8392836/ https://www.ncbi.nlm.nih.gov/pubmed/34441415 http://dx.doi.org/10.3390/diagnostics11081481 |
Sumario: | Magnetic resonance imaging (MRI) is increasingly important in the detection and localization of prostate cancer. Regarding suspicious lesions on MRI, a targeted biopsy using MRI fused with ultrasound (US) is widely used. To achieve a successful targeted biopsy, a precise registration between MRI and US is essential. The purpose of our study was to show any decrease in errors using a real-time nonrigid registration technique for prostate biopsy. Nineteen patients with suspected prostate cancer were prospectively enrolled in this study. Registration accuracy was calculated by the measuring distance of corresponding points by rigid and nonrigid registration between MRI and US, and compared for rigid and nonrigid registration methods. Overall cancer detection rates were also evaluated by patient and by core. Prostate volume was measured automatically from MRI and manually from US, and compared to each other. Mean distances between the corresponding points in MRI and US were 5.32 ± 2.61 mm for rigid registration and 2.11 ± 1.37 mm for nonrigid registration (p < 0.05). Cancer was diagnosed in 11 of 19 patients (57.9%), and in 67 of 266 biopsy cores (25.2%). There was no significant difference in prostate-volume measurement between the automatic and manual methods (p = 0.89). In conclusion, nonrigid registration reduces targeting errors. |
---|