Cargando…
Unsupervised Machine Learning to Identify Separable Clinical Alzheimer’s Disease Sub-Populations
Heterogeneity among Alzheimer’s disease (AD) patients confounds clinical trial patient selection and therapeutic efficacy evaluation. This work defines separable AD clinical sub-populations using unsupervised machine learning. Clustering (t-SNE followed by k-means) of patient features and associatio...
Autores principales: | Prakash, Jayant, Wang, Velda, Quinn, Robert E., Mitchell, Cassie S. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8392842/ https://www.ncbi.nlm.nih.gov/pubmed/34439596 http://dx.doi.org/10.3390/brainsci11080977 |
Ejemplares similares
-
Unsupervised Machine Learning to Identify Depressive Subtypes
por: Kung, Benson, et al.
Publicado: (2022) -
Identifying and evaluating clinical subtypes of Alzheimer’s disease in care electronic health records using unsupervised machine learning
por: Alexander, Nonie, et al.
Publicado: (2021) -
Identification and epidemiological characterization of Type-2 diabetes sub-population using an unsupervised machine learning approach
por: Bej, Saptarshi, et al.
Publicado: (2022) -
Use of unsupervised machine learning to characterise HIV predictors in sub-Saharan Africa
por: Mutai, Charles K., et al.
Publicado: (2023) -
Unsupervised machine learning identifies predictive progression markers of IPF
por: Pan, Jeanny, et al.
Publicado: (2022)