Cargando…
Evidential Deep Learning for Guided Molecular Property Prediction and Discovery
[Image: see text] While neural networks achieve state-of-the-art performance for many molecular modeling and structure–property prediction tasks, these models can struggle with generalization to out-of-domain examples, exhibit poor sample efficiency, and produce uncalibrated predictions. In this pap...
Autores principales: | Soleimany, Ava P., Amini, Alexander, Goldman, Samuel, Rus, Daniela, Bhatia, Sangeeta N., Coley, Connor W. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Chemical Society
2021
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8393200/ https://www.ncbi.nlm.nih.gov/pubmed/34471680 http://dx.doi.org/10.1021/acscentsci.1c00546 |
Ejemplares similares
-
Evidential meta-model for molecular property prediction
por: Ham, Kyung Pyo, et al.
Publicado: (2023) -
Learning and predicting the unknown class using evidential deep learning
por: Nagahama, Akihito
Publicado: (2023) -
Augmenting Deep Learning Performance in an Evidential Multiple Classifier System
por: Vandoni, Jennifer, et al.
Publicado: (2019) -
Evidential deep learning for trustworthy prediction of enzyme commission number
por: Han, So-Ra, et al.
Publicado: (2023) -
Protease Activity Analysis: A Toolkit for Analyzing
Enzyme Activity Data
por: Soleimany, Ava P., et al.
Publicado: (2022)