Cargando…
Prediction Models of Early Childhood Caries Based on Machine Learning Algorithms
In this study, we developed machine learning-based prediction models for early childhood caries and compared their performances with the traditional regression model. We analyzed the data of 4195 children aged 1–5 years from the Korea National Health and Nutrition Examination Survey data (2007–2018)...
Autores principales: | Park, You-Hyun, Kim, Sung-Hwa, Choi, Yoon-Young |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8393254/ https://www.ncbi.nlm.nih.gov/pubmed/34444368 http://dx.doi.org/10.3390/ijerph18168613 |
Ejemplares similares
-
Feeding Practices and Early Childhood Caries in Korean Preschool Children
por: Park, You Hyun, et al.
Publicado: (2021) -
Salivary cystatin S levels in children with early childhood caries in comparison with caries-free children; statistical analysis and machine learning
por: Koopaie, Maryam, et al.
Publicado: (2021) -
Early Childhood Caries
por: Kawashita, Yumiko, et al.
Publicado: (2011) -
Uses of Different Machine Learning Algorithms for Diagnosis of Dental Caries
por: Talpur, Sarena, et al.
Publicado: (2022) -
Predicting progression to dementia with “comprehensive visual rating scale” and machine learning algorithms
por: Park, Chaeyoon, et al.
Publicado: (2022)