Cargando…

Engagement of Language and Domain General Networks during Word Monitoring in a Native and Unknown Language

Functional neuroimaging studies have highlighted the roles of three networks in processing language, all of which are typically left-lateralized: a ventral stream involved in semantics, a dorsal stream involved in phonology and speech production, and a more dorsal “multiple demand” network involved...

Descripción completa

Detalles Bibliográficos
Autores principales: Cotosck, Kelly R., Meltzer, Jed A., Nucci, Mariana P., Lukasova, Katerina, Mansur, Letícia L., Amaro, Edson
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8393423/
https://www.ncbi.nlm.nih.gov/pubmed/34439682
http://dx.doi.org/10.3390/brainsci11081063
Descripción
Sumario:Functional neuroimaging studies have highlighted the roles of three networks in processing language, all of which are typically left-lateralized: a ventral stream involved in semantics, a dorsal stream involved in phonology and speech production, and a more dorsal “multiple demand” network involved in many effortful tasks. As lateralization in all networks may be affected by life factors such as age, literacy, education, and brain pathology, we sought to develop a task paradigm with which to investigate the engagement of these networks, including manipulations to selectively emphasize semantic and phonological processing within a single task performable by almost anyone regardless of literacy status. In young healthy participants, we administered an auditory word monitoring task, in which participants had to note the occurrence of a target word within a continuous story presented in either their native language, Portuguese, or the unknown language, Japanese. Native language task performance activated ventral stream language networks, left lateralized but bilateral in the anterior temporal lobe. Unfamiliar language performance, being more difficult, activated left hemisphere dorsal stream structures and the multiple demand network bilaterally, but predominantly in the right hemisphere. These findings suggest that increased demands on phonological processing to accomplish word monitoring in the absence of semantic support may result in the bilateral recruitment of networks involved in speech perception under more challenging conditions.