Cargando…
Empirical Evaluation of Alternative Time-Series Models for COVID-19 Forecasting in Saudi Arabia
COVID-19 is a disease-causing coronavirus strain that emerged in December 2019 that led to an ongoing global pandemic. The ability to anticipate the pandemic’s path is critical. This is important in order to determine how to combat and track its spread. COVID-19 data is an example of time-series dat...
Autores principales: | Al-Turaiki, Isra, Almutlaq, Fahad, Alrasheed, Hend, Alballa, Norah |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8393561/ https://www.ncbi.nlm.nih.gov/pubmed/34444409 http://dx.doi.org/10.3390/ijerph18168660 |
Ejemplares similares
-
Machine learning approaches in COVID-19 diagnosis, mortality, and severity risk prediction: A review
por: Alballa, Norah, et al.
Publicado: (2021) -
Molecular Characterization of Sarcocystis Species Isolated from Sheep and Goats in Riyadh, Saudi Arabia
por: Metwally, Dina M., et al.
Publicado: (2019) -
COVID-19 Spread in Saudi Arabia: Modeling, Simulation and Analysis
por: Alrasheed, Hend, et al.
Publicado: (2020) -
Molecular Identification of Trypanosoma evansi Isolated from Arabian Camels (Camelus dromedarius) in Riyadh and Al-Qassim, Saudi Arabia
por: Metwally, Dina M., et al.
Publicado: (2021) -
Identification of Sarcocystis spp. in One-humped Camels (Camelus dromedarius) from Riyadh and Dammam, Saudi Arabia, via Histological and Phylogenetic Approaches
por: Metwally, Dina M., et al.
Publicado: (2020)