Cargando…
Dynamic Time Warping Algorithm in Modeling Systemic Risk in the European Insurance Sector
We are looking for tools to identify, model, and measure systemic risk in the insurance sector. To this aim, we investigated the possibilities of using the Dynamic Time Warping (DTW) algorithm in two ways. The first way of using DTW is to assess the suitability of the Minimum Spanning Trees’ (MST) t...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8393574/ https://www.ncbi.nlm.nih.gov/pubmed/34441162 http://dx.doi.org/10.3390/e23081022 |
_version_ | 1783743756326928384 |
---|---|
author | Denkowska, Anna Wanat, Stanisław |
author_facet | Denkowska, Anna Wanat, Stanisław |
author_sort | Denkowska, Anna |
collection | PubMed |
description | We are looking for tools to identify, model, and measure systemic risk in the insurance sector. To this aim, we investigated the possibilities of using the Dynamic Time Warping (DTW) algorithm in two ways. The first way of using DTW is to assess the suitability of the Minimum Spanning Trees’ (MST) topological indicators, which were constructed based on the tail dependence coefficients determined by the copula-DCC-GARCH model in order to establish the links between insurance companies in the context of potential shock contagion. The second way consists of using the DTW algorithm to group institutions by the similarity of their contribution to systemic risk, as expressed by DeltaCoVaR, in the periods distinguished. For the crises and the normal states identified during the period 2005–2019 in Europe, we analyzed the similarity of the time series of the topological indicators of MST, constructed for 38 European insurance institutions. The results obtained confirm the effectiveness of MST topological indicators for systemic risk identification and the evaluation of indirect links between insurance institutions. |
format | Online Article Text |
id | pubmed-8393574 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-83935742021-08-28 Dynamic Time Warping Algorithm in Modeling Systemic Risk in the European Insurance Sector Denkowska, Anna Wanat, Stanisław Entropy (Basel) Article We are looking for tools to identify, model, and measure systemic risk in the insurance sector. To this aim, we investigated the possibilities of using the Dynamic Time Warping (DTW) algorithm in two ways. The first way of using DTW is to assess the suitability of the Minimum Spanning Trees’ (MST) topological indicators, which were constructed based on the tail dependence coefficients determined by the copula-DCC-GARCH model in order to establish the links between insurance companies in the context of potential shock contagion. The second way consists of using the DTW algorithm to group institutions by the similarity of their contribution to systemic risk, as expressed by DeltaCoVaR, in the periods distinguished. For the crises and the normal states identified during the period 2005–2019 in Europe, we analyzed the similarity of the time series of the topological indicators of MST, constructed for 38 European insurance institutions. The results obtained confirm the effectiveness of MST topological indicators for systemic risk identification and the evaluation of indirect links between insurance institutions. MDPI 2021-08-08 /pmc/articles/PMC8393574/ /pubmed/34441162 http://dx.doi.org/10.3390/e23081022 Text en © 2021 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Denkowska, Anna Wanat, Stanisław Dynamic Time Warping Algorithm in Modeling Systemic Risk in the European Insurance Sector |
title | Dynamic Time Warping Algorithm in Modeling Systemic Risk in the European Insurance Sector |
title_full | Dynamic Time Warping Algorithm in Modeling Systemic Risk in the European Insurance Sector |
title_fullStr | Dynamic Time Warping Algorithm in Modeling Systemic Risk in the European Insurance Sector |
title_full_unstemmed | Dynamic Time Warping Algorithm in Modeling Systemic Risk in the European Insurance Sector |
title_short | Dynamic Time Warping Algorithm in Modeling Systemic Risk in the European Insurance Sector |
title_sort | dynamic time warping algorithm in modeling systemic risk in the european insurance sector |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8393574/ https://www.ncbi.nlm.nih.gov/pubmed/34441162 http://dx.doi.org/10.3390/e23081022 |
work_keys_str_mv | AT denkowskaanna dynamictimewarpingalgorithminmodelingsystemicriskintheeuropeaninsurancesector AT wanatstanisław dynamictimewarpingalgorithminmodelingsystemicriskintheeuropeaninsurancesector |