Cargando…
Photodynamic Therapy Combined with Bcl-2/Bcl-xL Inhibition Increases the Noxa/Mcl-1 Ratio Independent of Usp9X and Synergistically Enhances Apoptosis in Glioblastoma
SIMPLE SUMMARY: Glioblastoma represents one of the most common malignant brain tumors in adults and is associated with a poor clinical outcome despite current therapeutic measures. Therefore, novel strategies for the treatment of this disease are urgently needed. In this work, we examined the antine...
Autores principales: | , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8393699/ https://www.ncbi.nlm.nih.gov/pubmed/34439278 http://dx.doi.org/10.3390/cancers13164123 |
Sumario: | SIMPLE SUMMARY: Glioblastoma represents one of the most common malignant brain tumors in adults and is associated with a poor clinical outcome despite current therapeutic measures. Therefore, novel strategies for the treatment of this disease are urgently needed. In this work, we examined the antineoplastic effects of a combined treatment with photodynamic therapy and ABT-263 on different glioblastoma cells. Photodynamic therapy uses the selective uptake of a photosensitive molecule followed by activation by light of a specific wavelength to kill cancer cells. ABT-263 is a small molecule inhibitor that targets cancer cells by facilitating programmed cell death. This novel combinatorial therapeutic strategy synergistically killed glioblastoma cells. These results indicate that a combination of the two treatment modalities may be of benefit for the treatment of glioblastoma supporting further studies. ABSTRACT: The purpose of this study was to assess in vitro whether the biological effects of 5-aminolevulinic acid (5-ALA)-based photodynamic therapy are enhanced by inhibition of the anti-apoptotic Bcl-2 family proteins Bcl-2 and Bcl-xL in different glioblastoma models. Pre-clinical testing of a microcontroller-based device emitting light of 405 nm wavelength in combination with exposure to 5-ALA (PDT) and the Bcl-2/Bcl-xL inhibitor ABT-263 (navitoclax) was performed in human established and primary cultured glioblastoma cells as well as glioma stem-like cells. We applied cell count analyses to assess cellular proliferation and Annexin V/PI staining to examine pro-apoptotic effects. Western blot analyses and specific knockdown experiments using siRNA were used to examine molecular mechanisms of action. Bcl-2/Bcl-xL inhibition synergistically enhanced apoptosis in combination with PDT. This effect was caspase-dependent. On the molecular level, PDT caused an increased Noxa/Mcl-1 ratio, which was even more pronounced when combined with ABT-263 in a Usp9X-independent manner. Our data showed that Bcl-2/Bcl-xL inhibition increases the response of glioblastoma cells toward photodynamic therapy. This effect can be partly attributed to cytotoxicity and is likely related to a pro-apoptotic shift because of an increased Noxa/Mcl-1 ratio. The results of this study warrant further investigation. |
---|