Cargando…

i4mC-Deep: An Intelligent Predictor of N4-Methylcytosine Sites Using a Deep Learning Approach with Chemical Properties

DNA is subject to epigenetic modification by the molecule N4-methylcytosine (4mC). N4-methylcytosine plays a crucial role in DNA repair and replication, protects host DNA from degradation, and regulates DNA expression. However, though current experimental techniques can identify 4mC sites, such tech...

Descripción completa

Detalles Bibliográficos
Autores principales: Alam, Waleed, Tayara, Hilal, Chong, Kil To
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8393747/
https://www.ncbi.nlm.nih.gov/pubmed/34440291
http://dx.doi.org/10.3390/genes12081117
Descripción
Sumario:DNA is subject to epigenetic modification by the molecule N4-methylcytosine (4mC). N4-methylcytosine plays a crucial role in DNA repair and replication, protects host DNA from degradation, and regulates DNA expression. However, though current experimental techniques can identify 4mC sites, such techniques are expensive and laborious. Therefore, computational tools that can predict 4mC sites would be very useful for understanding the biological mechanism of this vital type of DNA modification. Conventional machine-learning-based methods rely on hand-crafted features, but the new method saves time and computational cost by making use of learned features instead. In this study, we propose i4mC-Deep, an intelligent predictor based on a convolutional neural network (CNN) that predicts 4mC modification sites in DNA samples. The CNN is capable of automatically extracting important features from input samples during training. Nucleotide chemical properties and nucleotide density, which together represent a DNA sequence, act as CNN input data. The outcome of the proposed method outperforms several state-of-the-art predictors. When i4mC-Deep was used to analyze G. subterruneus DNA, the accuracy of the results was improved by 3.9% and MCC increased by 10.5% compared to a conventional predictor.