Cargando…
A Novel Hybrid Gradient-Based Optimizer and Grey Wolf Optimizer Feature Selection Method for Human Activity Recognition Using Smartphone Sensors
Human activity recognition (HAR) plays a vital role in different real-world applications such as in tracking elderly activities for elderly care services, in assisted living environments, smart home interactions, healthcare monitoring applications, electronic games, and various human–computer intera...
Autores principales: | Helmi, Ahmed Mohamed, Al-qaness, Mohammed A. A., Dahou, Abdelghani, Damaševičius, Robertas, Krilavičius , Tomas, Elaziz, Mohamed Abd |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8393762/ https://www.ncbi.nlm.nih.gov/pubmed/34441205 http://dx.doi.org/10.3390/e23081065 |
Ejemplares similares
-
Human Activity Recognition Based on Embedded Sensor Data Fusion for the Internet of Healthcare Things
por: Issa, Mohamed E., et al.
Publicado: (2022) -
The Applications of Metaheuristics for Human Activity Recognition and Fall Detection Using Wearable Sensors: A Comprehensive Analysis
por: Al-qaness, Mohammed A. A., et al.
Publicado: (2022) -
Hybrid Gradient Descent Grey Wolf Optimizer for Optimal Feature Selection
por: Kitonyi, Peter Mule, et al.
Publicado: (2021) -
Advanced Feature Extraction and Selection Approach Using Deep Learning and Aquila Optimizer for IoT Intrusion Detection System
por: Fatani, Abdulaziz, et al.
Publicado: (2021) -
Enhancing Intrusion Detection Systems for IoT and Cloud Environments Using a Growth Optimizer Algorithm and Conventional Neural Networks
por: Fatani, Abdulaziz, et al.
Publicado: (2023)