Cargando…

Improving Seismic Inversion Robustness via Deformed Jackson Gaussian

The seismic data inversion from observations contaminated by spurious measures (outliers) remains a significant challenge for the industrial and scientific communities. This difficulty is due to slow processing work to mitigate the influence of the outliers. In this work, we introduce a robust formu...

Descripción completa

Detalles Bibliográficos
Autores principales: Silva, Suzane A., da Silva, Sérgio Luiz E. F., de Souza, Renato F., Marinho, Andre A., de Araújo, João M., Bezerra, Claudionor G.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8393873/
https://www.ncbi.nlm.nih.gov/pubmed/34441220
http://dx.doi.org/10.3390/e23081081
_version_ 1783743823200911360
author Silva, Suzane A.
da Silva, Sérgio Luiz E. F.
de Souza, Renato F.
Marinho, Andre A.
de Araújo, João M.
Bezerra, Claudionor G.
author_facet Silva, Suzane A.
da Silva, Sérgio Luiz E. F.
de Souza, Renato F.
Marinho, Andre A.
de Araújo, João M.
Bezerra, Claudionor G.
author_sort Silva, Suzane A.
collection PubMed
description The seismic data inversion from observations contaminated by spurious measures (outliers) remains a significant challenge for the industrial and scientific communities. This difficulty is due to slow processing work to mitigate the influence of the outliers. In this work, we introduce a robust formulation to mitigate the influence of spurious measurements in the seismic inversion process. In this regard, we put forth an outlier-resistant seismic inversion methodology for model estimation based on the deformed Jackson Gaussian distribution. To demonstrate the effectiveness of our proposal, we investigated a classic geophysical data-inverse problem in three different scenarios: (i) in the first one, we analyzed the sensitivity of the seismic inversion to incorrect seismic sources; (ii) in the second one, we considered a dataset polluted by Gaussian errors with different noise intensities; and (iii) in the last one we considered a dataset contaminated by many outliers. The results reveal that the deformed Jackson Gaussian outperforms the classical approach, which is based on the standard Gaussian distribution.
format Online
Article
Text
id pubmed-8393873
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-83938732021-08-28 Improving Seismic Inversion Robustness via Deformed Jackson Gaussian Silva, Suzane A. da Silva, Sérgio Luiz E. F. de Souza, Renato F. Marinho, Andre A. de Araújo, João M. Bezerra, Claudionor G. Entropy (Basel) Article The seismic data inversion from observations contaminated by spurious measures (outliers) remains a significant challenge for the industrial and scientific communities. This difficulty is due to slow processing work to mitigate the influence of the outliers. In this work, we introduce a robust formulation to mitigate the influence of spurious measurements in the seismic inversion process. In this regard, we put forth an outlier-resistant seismic inversion methodology for model estimation based on the deformed Jackson Gaussian distribution. To demonstrate the effectiveness of our proposal, we investigated a classic geophysical data-inverse problem in three different scenarios: (i) in the first one, we analyzed the sensitivity of the seismic inversion to incorrect seismic sources; (ii) in the second one, we considered a dataset polluted by Gaussian errors with different noise intensities; and (iii) in the last one we considered a dataset contaminated by many outliers. The results reveal that the deformed Jackson Gaussian outperforms the classical approach, which is based on the standard Gaussian distribution. MDPI 2021-08-20 /pmc/articles/PMC8393873/ /pubmed/34441220 http://dx.doi.org/10.3390/e23081081 Text en © 2021 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Silva, Suzane A.
da Silva, Sérgio Luiz E. F.
de Souza, Renato F.
Marinho, Andre A.
de Araújo, João M.
Bezerra, Claudionor G.
Improving Seismic Inversion Robustness via Deformed Jackson Gaussian
title Improving Seismic Inversion Robustness via Deformed Jackson Gaussian
title_full Improving Seismic Inversion Robustness via Deformed Jackson Gaussian
title_fullStr Improving Seismic Inversion Robustness via Deformed Jackson Gaussian
title_full_unstemmed Improving Seismic Inversion Robustness via Deformed Jackson Gaussian
title_short Improving Seismic Inversion Robustness via Deformed Jackson Gaussian
title_sort improving seismic inversion robustness via deformed jackson gaussian
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8393873/
https://www.ncbi.nlm.nih.gov/pubmed/34441220
http://dx.doi.org/10.3390/e23081081
work_keys_str_mv AT silvasuzanea improvingseismicinversionrobustnessviadeformedjacksongaussian
AT dasilvasergioluizef improvingseismicinversionrobustnessviadeformedjacksongaussian
AT desouzarenatof improvingseismicinversionrobustnessviadeformedjacksongaussian
AT marinhoandrea improvingseismicinversionrobustnessviadeformedjacksongaussian
AT dearaujojoaom improvingseismicinversionrobustnessviadeformedjacksongaussian
AT bezerraclaudionorg improvingseismicinversionrobustnessviadeformedjacksongaussian