Cargando…
Flexible and Efficient Inference with Particles for the Variational Gaussian Approximation
Variational inference is a powerful framework, used to approximate intractable posteriors through variational distributions. The de facto standard is to rely on Gaussian variational families, which come with numerous advantages: they are easy to sample from, simple to parametrize, and many expectati...
Autores principales: | Galy-Fajou, Théo, Perrone, Valerio, Opper, Manfred |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8393997/ https://www.ncbi.nlm.nih.gov/pubmed/34441130 http://dx.doi.org/10.3390/e23080990 |
Ejemplares similares
-
Variational Bayesian Inference for Nonlinear Hawkes Process with Gaussian Process Self-Effects
por: Malem-Shinitski, Noa, et al.
Publicado: (2022) -
Jet Reconstruction and Kinematic Fitting of the Top Quark Pair Production at CLIC at √s = 3 TeV
por: Galy-Fajou, Theo
Publicado: (2016) -
Gaussian variational approximate inference for joint models of longitudinal biomarkers and a survival outcome
por: Tu, Jieqi, et al.
Publicado: (2022) -
Approximate Inference for Hierarchical Gaussian Markov Random Fields Models
por: Rue, H, et al.
Publicado: (2005) -
Gradient Regularization as Approximate Variational Inference
por: Unlu, Ali, et al.
Publicado: (2021)