Cargando…

Direct Endoplasmic Reticulum Targeting by the Selective Alkylphospholipid Analog and Antitumor Ether Lipid Edelfosine as a Therapeutic Approach in Pancreatic Cancer

SIMPLE SUMMARY: Pancreatic ductal adenocarcinoma (PDAC), comprising 90–95% of all pancreatic cancers, is one of the deadliest human cancers, with a gloomy prognosis and ~6-month median survival in metastatic tumors. Even patients with resectable tumors show a poor survival rate after surgery. Thus,...

Descripción completa

Detalles Bibliográficos
Autores principales: Mollinedo, Faustino, Gajate, Consuelo
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8394177/
https://www.ncbi.nlm.nih.gov/pubmed/34439330
http://dx.doi.org/10.3390/cancers13164173
_version_ 1783743887598157824
author Mollinedo, Faustino
Gajate, Consuelo
author_facet Mollinedo, Faustino
Gajate, Consuelo
author_sort Mollinedo, Faustino
collection PubMed
description SIMPLE SUMMARY: Pancreatic ductal adenocarcinoma (PDAC), comprising 90–95% of all pancreatic cancers, is one of the deadliest human cancers, with a gloomy prognosis and ~6-month median survival in metastatic tumors. Even patients with resectable tumors show a poor survival rate after surgery. Thus, PDAC represents an unmet therapeutic challenge. The aim of this review was to put into context the conundrum of pancreatic cancer treatment and the advent of a novel therapeutic approach, examining: (a) anatomical factors, demographics, statistics, and therapeutic approaches, affecting tumor detection, treatment, and prognosis; (b) the importance of the endoplasmic reticulum as a major target for pancreatic cancer due to its high abundance and activity in pancreatic cells; (c) the identification of the alkylphospholipid analog edelfosine as a novel drug against pancreatic cancer, showing two outstanding features—selective uptake by tumor tissue, and direct accumulation in the endoplasmic reticulum, leading to persistent endoplasmic reticulum stress and subsequent apoptosis. ABSTRACT: Pancreatic ductal adenocarcinoma (PDAC), the most common malignancy of the pancreas, shows a dismal and grim overall prognosis and survival rate, which have remained virtually unchanged for over half a century. PDAC is the most lethal of all cancers, with the highest mortality-to-incidence ratio. PDAC responds poorly to current therapies and remains an incurable malignancy. Therefore, novel therapeutic targets and drugs are urgently needed for pancreatic cancer treatment. Selective induction of apoptosis in cancer cells is an appealing approach in cancer therapy. Apoptotic cell death is highly regulated by different signaling routes that involve a variety of subcellular organelles. Endoplasmic reticulum (ER) stress acts as a double-edged sword at the interface of cell survival and death. Pancreatic cells exhibit high hormone and enzyme secretory functions, and thereby show a highly developed ER. Thus, pancreatic cancer cells display a prominent ER. Solid tumors have to cope with adverse situations in which hypoxia, lack of certain nutrients, and the action of certain antitumor agents lead to a complex interplay and crosstalk between ER stress and autophagy—the latter acting as an adaptive survival response. ER stress also mediates cell death induced by a number of anticancer drugs and experimental conditions, highlighting the pivotal role of ER stress in modulating cell fate. The alkylphospholipid analog prototype edelfosine is selectively taken up by tumor cells, accumulates in the ER of a number of human solid tumor cells—including pancreatic cancer cells—and promotes apoptosis through a persistent ER-stress-mediated mechanism both in vitro and in vivo. Here, we discuss and propose that direct ER targeting may be a promising approach in the therapy of pancreatic cancer, opening up a new avenue for the treatment of this currently incurable and deadly cancer. Furthermore, because autophagy acts as a cytoprotective response to ER stress, potentiation of the triggering of a persistent ER response by combination therapy, together with the use of autophagy blockers, could improve the current gloomy expectations for finding a cure for this type of cancer.
format Online
Article
Text
id pubmed-8394177
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-83941772021-08-28 Direct Endoplasmic Reticulum Targeting by the Selective Alkylphospholipid Analog and Antitumor Ether Lipid Edelfosine as a Therapeutic Approach in Pancreatic Cancer Mollinedo, Faustino Gajate, Consuelo Cancers (Basel) Review SIMPLE SUMMARY: Pancreatic ductal adenocarcinoma (PDAC), comprising 90–95% of all pancreatic cancers, is one of the deadliest human cancers, with a gloomy prognosis and ~6-month median survival in metastatic tumors. Even patients with resectable tumors show a poor survival rate after surgery. Thus, PDAC represents an unmet therapeutic challenge. The aim of this review was to put into context the conundrum of pancreatic cancer treatment and the advent of a novel therapeutic approach, examining: (a) anatomical factors, demographics, statistics, and therapeutic approaches, affecting tumor detection, treatment, and prognosis; (b) the importance of the endoplasmic reticulum as a major target for pancreatic cancer due to its high abundance and activity in pancreatic cells; (c) the identification of the alkylphospholipid analog edelfosine as a novel drug against pancreatic cancer, showing two outstanding features—selective uptake by tumor tissue, and direct accumulation in the endoplasmic reticulum, leading to persistent endoplasmic reticulum stress and subsequent apoptosis. ABSTRACT: Pancreatic ductal adenocarcinoma (PDAC), the most common malignancy of the pancreas, shows a dismal and grim overall prognosis and survival rate, which have remained virtually unchanged for over half a century. PDAC is the most lethal of all cancers, with the highest mortality-to-incidence ratio. PDAC responds poorly to current therapies and remains an incurable malignancy. Therefore, novel therapeutic targets and drugs are urgently needed for pancreatic cancer treatment. Selective induction of apoptosis in cancer cells is an appealing approach in cancer therapy. Apoptotic cell death is highly regulated by different signaling routes that involve a variety of subcellular organelles. Endoplasmic reticulum (ER) stress acts as a double-edged sword at the interface of cell survival and death. Pancreatic cells exhibit high hormone and enzyme secretory functions, and thereby show a highly developed ER. Thus, pancreatic cancer cells display a prominent ER. Solid tumors have to cope with adverse situations in which hypoxia, lack of certain nutrients, and the action of certain antitumor agents lead to a complex interplay and crosstalk between ER stress and autophagy—the latter acting as an adaptive survival response. ER stress also mediates cell death induced by a number of anticancer drugs and experimental conditions, highlighting the pivotal role of ER stress in modulating cell fate. The alkylphospholipid analog prototype edelfosine is selectively taken up by tumor cells, accumulates in the ER of a number of human solid tumor cells—including pancreatic cancer cells—and promotes apoptosis through a persistent ER-stress-mediated mechanism both in vitro and in vivo. Here, we discuss and propose that direct ER targeting may be a promising approach in the therapy of pancreatic cancer, opening up a new avenue for the treatment of this currently incurable and deadly cancer. Furthermore, because autophagy acts as a cytoprotective response to ER stress, potentiation of the triggering of a persistent ER response by combination therapy, together with the use of autophagy blockers, could improve the current gloomy expectations for finding a cure for this type of cancer. MDPI 2021-08-19 /pmc/articles/PMC8394177/ /pubmed/34439330 http://dx.doi.org/10.3390/cancers13164173 Text en © 2021 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
spellingShingle Review
Mollinedo, Faustino
Gajate, Consuelo
Direct Endoplasmic Reticulum Targeting by the Selective Alkylphospholipid Analog and Antitumor Ether Lipid Edelfosine as a Therapeutic Approach in Pancreatic Cancer
title Direct Endoplasmic Reticulum Targeting by the Selective Alkylphospholipid Analog and Antitumor Ether Lipid Edelfosine as a Therapeutic Approach in Pancreatic Cancer
title_full Direct Endoplasmic Reticulum Targeting by the Selective Alkylphospholipid Analog and Antitumor Ether Lipid Edelfosine as a Therapeutic Approach in Pancreatic Cancer
title_fullStr Direct Endoplasmic Reticulum Targeting by the Selective Alkylphospholipid Analog and Antitumor Ether Lipid Edelfosine as a Therapeutic Approach in Pancreatic Cancer
title_full_unstemmed Direct Endoplasmic Reticulum Targeting by the Selective Alkylphospholipid Analog and Antitumor Ether Lipid Edelfosine as a Therapeutic Approach in Pancreatic Cancer
title_short Direct Endoplasmic Reticulum Targeting by the Selective Alkylphospholipid Analog and Antitumor Ether Lipid Edelfosine as a Therapeutic Approach in Pancreatic Cancer
title_sort direct endoplasmic reticulum targeting by the selective alkylphospholipid analog and antitumor ether lipid edelfosine as a therapeutic approach in pancreatic cancer
topic Review
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8394177/
https://www.ncbi.nlm.nih.gov/pubmed/34439330
http://dx.doi.org/10.3390/cancers13164173
work_keys_str_mv AT mollinedofaustino directendoplasmicreticulumtargetingbytheselectivealkylphospholipidanalogandantitumoretherlipidedelfosineasatherapeuticapproachinpancreaticcancer
AT gajateconsuelo directendoplasmicreticulumtargetingbytheselectivealkylphospholipidanalogandantitumoretherlipidedelfosineasatherapeuticapproachinpancreaticcancer