Cargando…
Latent Network Construction for Univariate Time Series Based on Variational Auto-Encode
Time series analysis has been an important branch of information processing, and the conversion of time series into complex networks provides a new means to understand and analyze time series. In this work, using Variational Auto-Encode (VAE), we explored the construction of latent networks for univ...
Autores principales: | Sun, Jiancheng, Wu, Zhinan, Chen, Si, Niu, Huimin, Tu, Zongqing |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8394240/ https://www.ncbi.nlm.nih.gov/pubmed/34441211 http://dx.doi.org/10.3390/e23081071 |
Ejemplares similares
-
Complex Network Construction of Univariate Chaotic Time Series Based on Maximum Mean Discrepancy
por: Sun, Jiancheng
Publicado: (2020) -
Spectral analysis for univariate time series
por: Percival, Donald B, et al.
Publicado: (2020) -
Quantum Variational AutoEncoder
por: Vinci, Walter
Publicado: (2018) -
Dynamics analysis of neural univariate time series by recurrence plots
por: Tošić, Tamara, et al.
Publicado: (2015) -
Reservoir based spiking models for univariate Time Series Classification
por: Gaurav, Ramashish, et al.
Publicado: (2023)