Cargando…
Learning Ordinal Embedding from Sets
Ordinal embedding is the task of computing a meaningful multidimensional representation of objects, for which only qualitative constraints on their distance functions are known. In particular, we consider comparisons of the form “Which object from the pair [Formula: see text] is more similar to obje...
Autores principales: | Diallo, Aïssatou, Fürnkranz, Johannes |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8394301/ https://www.ncbi.nlm.nih.gov/pubmed/34441104 http://dx.doi.org/10.3390/e23080964 |
Ejemplares similares
-
Estimation of perceptual scales using ordinal embedding
por: Haghiri, Siavash, et al.
Publicado: (2020) -
A Note on Computable Embeddings for Ordinals and Their Reverses
por: Bazhenov, Nikolay, et al.
Publicado: (2020) -
Ordinal analysis and the set existence property for intuitionistic set theories
por: Rathjen, Michael
Publicado: (2023) -
An Empirical Investigation Into Deep and Shallow Rule Learning
por: Beck, Florian, et al.
Publicado: (2021) -
AutoScore-Ordinal: an interpretable machine learning framework for generating scoring models for ordinal outcomes
por: Saffari, Seyed Ehsan, et al.
Publicado: (2022)