Cargando…
Fault Recognition of Rolling Bearings Based on Parameter Optimized Multi-Scale Permutation Entropy and Gath-Geva
To extract fault features of rolling bearing vibration signals precisely, a fault diagnosis method based on parameter optimized multi-scale permutation entropy (MPE) and Gath-Geva (GG) clustering is proposed. The method can select the important parameters of MPE method adaptively, overcome the disad...
Autores principales: | Wang, Haiming, Li, Qiang, Yang, Shaopu, Liu, Yongqiang |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8394354/ https://www.ncbi.nlm.nih.gov/pubmed/34441180 http://dx.doi.org/10.3390/e23081040 |
Ejemplares similares
-
Use of Composite Multivariate Multiscale Permutation Fuzzy Entropy to Diagnose the Faults of Rolling Bearing
por: Yuan, Qiang, et al.
Publicado: (2023) -
Composite Multivariate Multi-Scale Permutation Entropy and Laplacian Score Based Fault Diagnosis of Rolling Bearing
por: Ying, Wanming, et al.
Publicado: (2022) -
Optimized Adaptive Local Iterative Filtering Algorithm Based on Permutation Entropy for Rolling Bearing Fault Diagnosis
por: Lv, Yong, et al.
Publicado: (2018) -
Fault Diagnosis for Rolling Element Bearings Based on Feature Space Reconstruction and Multiscale Permutation Entropy
por: Zhang, Weibo, et al.
Publicado: (2019) -
Hierarchical Amplitude-Aware Permutation Entropy-Based Fault Feature Extraction Method for Rolling Bearings
por: Li, Zhe, et al.
Publicado: (2022)