Cargando…
A New Total Uncertainty Measure from A Perspective of Maximum Entropy Requirement
The Dempster-Shafer theory (DST) is an information fusion framework and widely used in many fields. However, the uncertainty measure of a basic probability assignment (BPA) is still an open issue in DST. There are many methods to quantify the uncertainty of BPAs. However, the existing methods have s...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8394407/ https://www.ncbi.nlm.nih.gov/pubmed/34441201 http://dx.doi.org/10.3390/e23081061 |
Sumario: | The Dempster-Shafer theory (DST) is an information fusion framework and widely used in many fields. However, the uncertainty measure of a basic probability assignment (BPA) is still an open issue in DST. There are many methods to quantify the uncertainty of BPAs. However, the existing methods have some limitations. In this paper, a new total uncertainty measure from a perspective of maximum entropy requirement is proposed. The proposed method can measure both dissonance and non-specificity in BPA, which includes two components. The first component is consistent with Yager’s dissonance measure. The second component is the non-specificity measurement with different functions. We also prove the desirable properties of the proposed method. Besides, numerical examples and applications are provided to illustrate the effectiveness of the proposed total uncertainty measure. |
---|