Cargando…

Unraveling Tumor Heterogeneity by Using DNA Barcoding Technologies to Develop Personalized Treatment Strategies in Advanced-Stage PDAC

SIMPLE SUMMARY: Pancreatic cancer is one of the hardest-to-treat cancers. This is mainly due to its heterogeneity, where subsets of cancer cells possess distinct properties and abilities that determine if and how they metastasize or respond to therapy. DNA barcoding technologies have emerged as a po...

Descripción completa

Detalles Bibliográficos
Autores principales: Dujardin, Philip, Baginska, Anna K., Urban, Sebastian, Grüner, Barbara M.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8394487/
https://www.ncbi.nlm.nih.gov/pubmed/34439341
http://dx.doi.org/10.3390/cancers13164187
Descripción
Sumario:SIMPLE SUMMARY: Pancreatic cancer is one of the hardest-to-treat cancers. This is mainly due to its heterogeneity, where subsets of cancer cells possess distinct properties and abilities that determine if and how they metastasize or respond to therapy. DNA barcoding technologies have emerged as a powerful tool to study this heterogeneity, as they allow labeling of individual tumor cells within a cancer cell pool and follow their cellular states and fates during metastasis or upon therapy. The aim of this review was to provide an overview of the various levels of tumor heterogeneity in pancreatic cancer, the obstacles these levels of heterogeneity can cause for effective personalized treatment strategies, and how different barcoding approaches can be applied to study these important questions. ABSTRACT: Tumor heterogeneity is a hallmark of many solid tumors, including pancreatic ductal adenocarcinoma (PDAC), and an inherent consequence of the clonal evolution of cancers. As such, it is considered the underlying concept of many characteristics of the disease, including the ability to metastasize, adapt to different microenvironments, and to develop therapy resistance. Undoubtedly, the high mortality of PDAC can be attributed to a high extent to these properties. Despite its apparent importance, studying tumor heterogeneity has been a challenging task, mainly due to its complexity and lack of appropriate methods. However, in recent years molecular DNA barcoding has emerged as a sophisticated tool that allows mapping of individual cells or subpopulations in a cell pool to study heterogeneity and thus devise new personalized treatment strategies. In this review, we provide an overview of genetic and non-genetic inter- and intra-tumor heterogeneity and its impact on (personalized) treatment strategies in PDAC and address how DNA barcoding technologies work and can be applied to study this clinically highly relevant question.