Cargando…
Testing a Deep Learning Algorithm for Detection of Diabetic Retinopathy in a Spanish Diabetic Population and with MESSIDOR Database
Background: The aim of the present study was to test our deep learning algorithm (DLA) by reading the retinographies. Methods: We tested our DLA built on convolutional neural networks in 14,186 retinographies from our population and 1200 images extracted from MESSIDOR. The retinal images were graded...
Autores principales: | Baget-Bernaldiz, Marc, Pedro, Romero-Aroca, Santos-Blanco, Esther, Navarro-Gil, Raul, Valls, Aida, Moreno, Antonio, Rashwan, Hatem A., Puig, Domenec |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8394605/ https://www.ncbi.nlm.nih.gov/pubmed/34441319 http://dx.doi.org/10.3390/diagnostics11081385 |
Ejemplares similares
-
Validation of an Algorithm for the Prediction of Diabetic Retinopathy in Type 1 Diabetic Patients in a Spanish Population
por: Romero-Aroca, Pedro, et al.
Publicado: (2022) -
A Clinical Decision Support System for Diabetic Retinopathy Screening: Creating a Clinical Support Application
por: Romero-Aroca, Pedro, et al.
Publicado: (2019) -
Differences in Multifocal Electroretinogram Study in Two Populations of Type 1 and Type 2 Diabetes Mellitus Patients without Diabetic Retinopathy
por: Romero-Aroca, Pedro, et al.
Publicado: (2022) -
The Effect of HbA(1c) Variability as a Risk Measure for Microangiopathy in Type 1 Diabetes Mellitus
por: Romero-Aroca, Pedro, et al.
Publicado: (2021) -
Validation of a Diagnostic Support System for Diabetic Retinopathy Based on Clinical Parameters
por: Romero-Aroca, Pedro, et al.
Publicado: (2021)