Cargando…

Melatonin and Glycine Reduce Uterus Ischemia/Reperfusion Injury in a Rat Model of Warm Ischemia

Ischemia/reperfusion injury (IRI) remains a significant problem to be solved in uterus transplantation (UTx). Melatonin and glycine have been shown to possess direct cytoprotective activities, mainly due to their antioxidative and anti-inflammatory properties. The aim of this study was to investigat...

Descripción completa

Detalles Bibliográficos
Autores principales: Zitkute, Viktorija, Kvietkauskas, Mindaugas, Maskoliunaite, Vygante, Leber, Bettina, Ramasauskaite, Diana, Strupas, Kestutis, Stiegler, Philipp, Schemmer, Peter
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8394613/
https://www.ncbi.nlm.nih.gov/pubmed/34445081
http://dx.doi.org/10.3390/ijms22168373
Descripción
Sumario:Ischemia/reperfusion injury (IRI) remains a significant problem to be solved in uterus transplantation (UTx). Melatonin and glycine have been shown to possess direct cytoprotective activities, mainly due to their antioxidative and anti-inflammatory properties. The aim of this study was to investigate the protective effects of melatonin and glycine and their combination on IRI in a rat model of warm ischemia. In this study, Sprague-Dawley rats were assigned to eight groups, including sham and IRI (n = 80). Melatonin and glycine alone or their combination were administered prior to 1 h of uterus ischemia followed by 1 h of reperfusion. Melatonin (50 mg/kg) was administered via gavage 2 h before IRI and glycine in an enriched diet for 5 days prior to intervention. Uterus IRI was estimated by histology, including immunohistochemistry, and biochemical tissue analyses. Histology revealed that uterus IRI was significantly attenuated by pretreatment with melatonin (p = 0.019) and glycine (p = 0.044) alone as well as their combination (p = 0.003). Uterus IRI led to increased myeloperoxidase expression, which was significantly reduced by melatonin (p = 0.004), glycine (p < 0.001) or their combination (p < 0.001). The decline in superoxide dismutase activity was significantly reduced in the melatonin (p = 0.027), glycine (p = 0.038) and combined treatment groups (p = 0.015) when compared to the IRI control group. In conclusion, melatonin, glycine and their combination significantly reduced oxidative stress-induced cell damage after IRI in a small animal warm ischemia model, and, therefore, clinical studies are required to evaluate the protective effects of these well-characterized substances in uterus IRI.