Cargando…
A Study of One-Class Classification Algorithms for Wearable Fall Sensors
In recent years, the popularity of wearable devices has fostered the investigation of automatic fall detection systems based on the analysis of the signals captured by transportable inertial sensors. Due to the complexity and variety of human movements, the detection algorithms that offer the best p...
Autores principales: | Santoyo-Ramón, José Antonio, Casilari, Eduardo, Cano-García, José Manuel |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8394742/ https://www.ncbi.nlm.nih.gov/pubmed/34436087 http://dx.doi.org/10.3390/bios11080284 |
Ejemplares similares
-
Analysis of Public Datasets for Wearable Fall Detection Systems
por: Casilari, Eduardo, et al.
Publicado: (2017) -
A study on the impact of the users’ characteristics on the performance of wearable fall detection systems
por: Santoyo-Ramón, José Antonio, et al.
Publicado: (2021) -
Analysis of a Smartphone-Based Architecture with Multiple Mobility Sensors for Fall Detection
por: Casilari, Eduardo, et al.
Publicado: (2016) -
Analysis of a Smartphone-Based Architecture with Multiple Mobility Sensors for Fall Detection with Supervised Learning
por: Santoyo-Ramón, José Antonio, et al.
Publicado: (2018) -
On the Heterogeneity of Existing Repositories of Movements Intended for the Evaluation of Fall Detection Systems
por: Casilari, Eduardo, et al.
Publicado: (2020)