Cargando…
Changes of Gene Expression Patterns from Aquatic Organisms Exposed to Metal Nanoparticles
Metal nanoparticles are used in various branches of industry due to their physicochemical properties. However, with intensive use, most of the waste and by-products from industries and household items, and from weathering of products containing nanoparticles, end up in the waters. These pollutants p...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8394891/ https://www.ncbi.nlm.nih.gov/pubmed/34444111 http://dx.doi.org/10.3390/ijerph18168361 |
Sumario: | Metal nanoparticles are used in various branches of industry due to their physicochemical properties. However, with intensive use, most of the waste and by-products from industries and household items, and from weathering of products containing nanoparticles, end up in the waters. These pollutants pose a risk to aquatic organisms, one of which is a change in the expression of various genes. Most of the data that focus on metal nanoparticles and their effects on aquatic organisms are about copper and silver nanoparticles, which is due to their popularity in general industry, but information about other nanoparticulate metals can also be found. This review aims to evaluate gene expression patterns in aquatic organisms by metal nanoparticles, specifying details about the transcription changes of singular genes and, if possible, comparing the changes in the expression of the same genes in different organisms. To achieve this goal, available publications tackling this problem are studied and summarized. Nanometals were found to have a modulatory effect on gene expression in different aquatic organisms. Data show both up-regulation and down-regulation of genes. Nano silver, nano copper, and nano zinc show a regulatory effect on genes involved in inflammation and apoptosis, cell cycle regulation and ROS defense as well as in general stress response and have a negative effect on the expression of genes involved in development. Nano gold, nano titanium, nano zinc, and nano iron tend to elevate the transcripts of genes involved in response to ROS, but also pro-apoptotic genes and down-regulate DNA repair-involved genes and anti-apoptotic-involved genes. Nano selenium showed a rare effect that is protective against harmful effects of other nanoparticles, but also induced up-regulation of stress response genes. This review focuses only on the effects of metal nanoparticles on the expression of various genes of aquatic organisms from different taxonomic groups. |
---|