Cargando…
Comparison of Supervised and Unsupervised Approaches for the Generation of Synthetic CT from Cone-Beam CT
Due to major artifacts and uncalibrated Hounsfield units (HU), cone-beam computed tomography (CBCT) cannot be used readily for diagnostics and therapy planning purposes. This study addresses image-to-image translation by convolutional neural networks (CNNs) to convert CBCT to CT-like scans, comparin...
Autores principales: | Rossi, Matteo, Cerveri, Pietro |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8395013/ https://www.ncbi.nlm.nih.gov/pubmed/34441369 http://dx.doi.org/10.3390/diagnostics11081435 |
Ejemplares similares
-
Deep learning based synthetic CT from cone beam CT generation for abdominal paediatric radiotherapy
por: Szmul, Adam, et al.
Publicado: (2023) -
Generating synthetic CT from low-dose cone-beam CT by using generative adversarial networks for adaptive radiotherapy
por: Gao, Liugang, et al.
Publicado: (2021) -
Cone beam CT for QA of synthetic CT in MRI only for prostate patients
por: Palmér, Emilia, et al.
Publicado: (2018) -
A Deep Unsupervised Learning Model for Artifact Correction of Pelvis Cone-Beam CT
por: Dong, Guoya, et al.
Publicado: (2021) -
Incorporating the synthetic CT image for improving the performance of deformable image registration between planning CT and cone-beam CT
por: Li, Na, et al.
Publicado: (2023)