Cargando…
An Artificial Intelligence-Enabled Pipeline for Medical Domain: Malaysian Breast Cancer Survivorship Cohort as a Case Study
Automated artificial intelligence (AI) systems enable the integration of different types of data from various sources for clinical decision-making. The aim of this study is to propose a pipeline to develop a fully automated clinician-friendly AI-enabled database platform for breast cancer survival p...
Autores principales: | Ganggayah, Mogana Darshini, Dhillon, Sarinder Kaur, Islam, Tania, Kalhor, Foad, Chiang, Teh Chean, Kalafi, Elham Yousef, Taib, Nur Aishah |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8395030/ https://www.ncbi.nlm.nih.gov/pubmed/34441426 http://dx.doi.org/10.3390/diagnostics11081492 |
Ejemplares similares
-
Classification of Breast Cancer Lesions in Ultrasound Images by Using Attention Layer and Loss Ensemble in Deep Convolutional Neural Networks
por: Kalafi, Elham Yousef, et al.
Publicado: (2021) -
Theory and Practice of Integrating Machine Learning and Conventional Statistics in Medical Data Analysis
por: Dhillon, Sarinder Kaur, et al.
Publicado: (2022) -
Predicting factors for survival of breast cancer patients using machine learning techniques
por: Ganggayah, Mogana Darshini, et al.
Publicado: (2019) -
The “Know Your Lemons” Tools: A strategy to improve breast cancer warning signs recognition in Malaysia
por: Mei Yen, Mary Chan, et al.
Publicado: (2023) -
Automated Generation of Synoptic Reports from Narrative Pathology Reports in University Malaya Medical Centre Using Natural Language Processing
por: Tan, Wee-Ming, et al.
Publicado: (2022)