Cargando…

Sustained Elevated Blood Pressure Accelerates Atherosclerosis Development in a Preclinical Model of Disease

The continuous relationship between blood pressure (BP) and cardiovascular events makes the distinction between elevated BP and hypertension based on arbitrary cut-off values for BP. Even mild BP elevations manifesting as high-normal BP have been associated with cardiovascular risk. We hypothesize t...

Descripción completa

Detalles Bibliográficos
Autores principales: Gonzalez-Guerra, Andrés, Roche-Molina, Marta, García-Quintáns, Nieves, Sánchez-Ramos, Cristina, Martín-Pérez, Daniel, Lytvyn, Mariya, de Nicolás-Hernández, Javier, Rivera-Torres, José, Arroyo, Diego F., Sanz-Rosa, David, Bernal, Juan A.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8395088/
https://www.ncbi.nlm.nih.gov/pubmed/34445154
http://dx.doi.org/10.3390/ijms22168448
Descripción
Sumario:The continuous relationship between blood pressure (BP) and cardiovascular events makes the distinction between elevated BP and hypertension based on arbitrary cut-off values for BP. Even mild BP elevations manifesting as high-normal BP have been associated with cardiovascular risk. We hypothesize that persistent elevated BP increases atherosclerotic plaque development. To evaluate this causal link, we developed a new mouse model of elevated BP based on adeno-associated virus (AAV) gene transfer. We constructed AAV vectors to support transfer of the hRenin and hAngiotensinogen genes. A single injection of AAV-Ren/Ang (10(11) total viral particles) induced sustained systolic BP increase (130 ± 20 mmHg, vs. 110 ± 15 mmHg in controls; p = 0.05). In ApoE(−/−) mice, AAV-induced mild BP elevation caused larger atherosclerotic lesions evaluated by histology (10-fold increase vs. normotensive controls). In this preclinical model, atheroma plaques development was attenuated by BP control with a calcium channel blocker, indicating that a small increase in BP within a physiological range has a substantial impact on plaque development in a preclinical model of atherosclerosis. These data support that non-optimal BP represents a risk for atherosclerosis development. Earlier intervention in elevated BP may prevent or delay morbidity and mortality associated with atherosclerosis.