Cargando…
Classification of MSH6 Variants of Uncertain Significance Using Functional Assays
Lynch syndrome (LS) is one of the most common hereditary cancer predisposition syndromes worldwide. Individuals with LS have a high risk of developing colorectal or endometrial cancer, as well as several other cancers. LS is caused by autosomal dominant pathogenic variants in one of the DNA mismatch...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8395337/ https://www.ncbi.nlm.nih.gov/pubmed/34445333 http://dx.doi.org/10.3390/ijms22168627 |
Sumario: | Lynch syndrome (LS) is one of the most common hereditary cancer predisposition syndromes worldwide. Individuals with LS have a high risk of developing colorectal or endometrial cancer, as well as several other cancers. LS is caused by autosomal dominant pathogenic variants in one of the DNA mismatch repair (MMR) genes MLH1, MSH2, PMS2 or MSH6, and typically include truncating variants, such as frameshift, nonsense or splicing variants. However, a significant number of missense, intronic, or silent variants, or small in-frame insertions/deletions, are detected during genetic screening of the MMR genes. The clinical effects of these variants are often more difficult to predict, and a large fraction of these variants are classified as variants of uncertain significance (VUS). It is pivotal for the clinical management of LS patients to have a clear genetic diagnosis, since patients benefit widely from screening, preventive and personal therapeutic measures. Moreover, in families where a pathogenic variant is identified, testing can be offered to family members, where non-carriers can be spared frequent surveillance, while carriers can be included in cancer surveillance programs. It is therefore important to reclassify VUSs, and, in this regard, functional assays can provide insight into the effect of a variant on the protein or mRNA level. Here, we briefly describe the disorders that are related to MMR deficiency, as well as the structure and function of MSH6. Moreover, we review the functional assays that are used to examine VUS identified in MSH6 and discuss the results obtained in relation to the ACMG/AMP PS3/BS3 criterion. We also provide a compiled list of the MSH6 variants examined by these assays. Finally, we provide a future perspective on high-throughput functional analyses with specific emphasis on the MMR genes. |
---|