Cargando…

Ionic Liquid Containing Block Copolymer Dielectrics: Designing for High-Frequency Capacitance, Low-Voltage Operation, and Fast Switching Speeds

[Image: see text] Polymerized ionic liquids (PILs) are a potential solution to the large-scale production of low-power consuming organic thin-film transistors (OTFTs). When used as the device gating medium in OTFTs, PILs experience a double-layer capacitance that enables thickness independent, low-v...

Descripción completa

Detalles Bibliográficos
Autores principales: Peltekoff, Alexander J., Brixi, Samantha, Niskanen, Jukka, Lessard, Benoît H.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Chemical Society 2021
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8395628/
https://www.ncbi.nlm.nih.gov/pubmed/34467348
http://dx.doi.org/10.1021/jacsau.1c00133
Descripción
Sumario:[Image: see text] Polymerized ionic liquids (PILs) are a potential solution to the large-scale production of low-power consuming organic thin-film transistors (OTFTs). When used as the device gating medium in OTFTs, PILs experience a double-layer capacitance that enables thickness independent, low-voltage operation. PIL microstructure, polymer composition, and choice of anion have all been reported to have an effect on device performance, but a better structure property relationship is still required. A library of 27 well-defined, poly(styrene)-b-poly(1-(4-vinylbenzyl)-3-butylimidazolium-random-poly(ethylene glycol) methyl ether methacrylate) (poly(S)-b-poly(VBBI(+)[X]-r-PEGMA)) block copolymers, with varying PEGMA/VBBI(+) ratios and three different mobile anions (where X = TFSI(–), PF(6)(–) or BF(4)(–)), were synthesized, characterized and integrated into OTFTs. The fraction of VBBI(+) in the poly(VBBI(+)[X]-r-PEGMA) block ranged from to 100 mol % and led to glass transition temperatures (T(g)) between −7 and 55 °C for that block. When VBBI(+) composition was equal or above 50 mol %, the block copolymer self-assembled into well-ordered domains with sizes between 22 and 52 nm, depending on the composition and choice of anion. The block copolymers double-layer capacitance (C(DL)) and ionic conductivity (σ) were found to correlate to the polymer self-assembly and the T(g) of the poly(VBBI(+)[X]-r-PEGMA) block. Finally, the block copolymers were integrated into OTFTs as the gating medium that led to n-type devices with threshold voltages of 0.5–1.5 V while maintaining good electron mobilities. We also found that the greater the σ of the PIL, the greater the OTFT operating frequency could reach. However, we also found that C(DL) is not strictly proportional to OTFT output currents.