Cargando…
Evaluating a Machine Learning Tool for the Classification of Pathological Uptake in Whole-Body PSMA-PET-CT Scans
The importance of machine learning (ML) in the clinical environment increases constantly. Differentiation of pathological from physiological tracer-uptake in positron emission tomography/computed tomography (PET/CT) images is considered time-consuming and attention intensive, hence crucial for diagn...
Autores principales: | Erle, Annette, Moazemi, Sobhan, Lütje, Susanne, Essler, Markus, Schultz, Thomas, Bundschuh, Ralph A. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8396250/ https://www.ncbi.nlm.nih.gov/pubmed/34449727 http://dx.doi.org/10.3390/tomography7030027 |
Ejemplares similares
-
Machine Learning Facilitates Hotspot Classification in PSMA-PET/CT with Nuclear Medicine Specialist Accuracy
por: Moazemi, Sobhan, et al.
Publicado: (2020) -
Estimating the Potential of Radiomics Features and Radiomics Signature from Pretherapeutic PSMA-PET-CT Scans and Clinical Data for Prediction of Overall Survival When Treated with (177)Lu-PSMA
por: Moazemi, Sobhan, et al.
Publicado: (2021) -
Decision-support for treatment with (177)Lu-PSMA: machine learning predicts response with high accuracy based on PSMA-PET/CT and clinical parameters
por: Moazemi, Sobhan, et al.
Publicado: (2021) -
High Interobserver Agreement on PSMA PET/CT Even in the Absence of Clinical Data
por: Bundschuh, Ralph A., et al.
Publicado: (2023) -
Assessment of Bone Metastases in Patients with Prostate Cancer—A Comparison between (99m)Tc-Bone-Scintigraphy and [(68)Ga]Ga-PSMA PET/CT
por: Thomas, Lena, et al.
Publicado: (2017)