Cargando…
Establishment of Three-Dimensional Bioprinted Bladder Cancer-on-a-Chip with a Microfluidic System Using Bacillus Calmette–Guérin
Immunotherapy of bladder cancer is known to have favorable effects, although it is difficult to determine which patients will show a good response because of the different tumor microenvironments (TME). Here, we developed a bladder cancer-on-a-chip (BCOC) to mimic the TME using three-dimensional (3D...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8396314/ https://www.ncbi.nlm.nih.gov/pubmed/34445591 http://dx.doi.org/10.3390/ijms22168887 |
Sumario: | Immunotherapy of bladder cancer is known to have favorable effects, although it is difficult to determine which patients will show a good response because of the different tumor microenvironments (TME). Here, we developed a bladder cancer-on-a-chip (BCOC) to mimic the TME using three-dimensional (3D) bioprinting and microfluidic technology. We fabricated a T24 and a 5637-cell line-based BCOC that also incorporated MRC-5, HUVEC, and THP-1 cells. We evaluated the effects of TME and assessed the immunologic reactions in response to different concentrations of Bacillus Calmette–Guérin (BCG) via live/dead assay and THP-1 monocytic migration, and concentrations of growth factors and cytokines. The results show that cell viability was maintained at 15% filling density in circle-shaped cell constructs at 20 μL/min microfluidic flow rate. A 3D co-culture increased the proliferation of BCOCs. We found that the appropriate time to evaluate the viability of BCOC, concentration of cytokines, and migration of monocytes was 6 h, 24 h, and three days after BGC treatment. Lastly, the immunotherapeutic effects of BCOC increased according to BCG dosage. To predict effects of immunotherapeutic agent in bladder cancer, we constructed a 3D bioprinted BCOC model. The BCOC was validated with BCG, which has been proven to be effective in the immunotherapy of bladder cancer. |
---|