Cargando…
Quantification of the Immune Content in Neuroblastoma: Deep Learning and Topological Data Analysis in Digital Pathology
We introduce here a novel machine learning (ML) framework to address the issue of the quantitative assessment of the immune content in neuroblastoma (NB) specimens. First, the EUNet, a U-Net with an EfficientNet encoder, is trained to detect lymphocytes on tissue digital slides stained with the CD3...
Autores principales: | Bussola, Nicole, Papa, Bruno, Melaiu, Ombretta, Castellano, Aurora, Fruci, Doriana, Jurman, Giuseppe |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8396341/ https://www.ncbi.nlm.nih.gov/pubmed/34445517 http://dx.doi.org/10.3390/ijms22168804 |
Ejemplares similares
-
Cellular and gene signatures of tumor-infiltrating dendritic cells and natural-killer cells predict prognosis of neuroblastoma
por: Melaiu, Ombretta, et al.
Publicado: (2020) -
MYCN is an immunosuppressive oncogene dampening the expression of ligands for NK-cell-activating receptors in human high-risk neuroblastoma
por: Brandetti, Elisa, et al.
Publicado: (2017) -
Influence of the Tumor Microenvironment on NK Cell Function in Solid Tumors
por: Melaiu, Ombretta, et al.
Publicado: (2020) -
Two bullets in the gun: combining immunotherapy with chemotherapy to defeat neuroblastoma by targeting adrenergic-mesenchymal plasticity
por: D’Amico, Silvia, et al.
Publicado: (2023) -
Impact of Natural Occurring ERAP1 Single Nucleotide Polymorphisms within miRNA-Binding Sites on HCMV Infection
por: Melaiu, Ombretta, et al.
Publicado: (2020)