Cargando…
Combination of Radiomics and Machine Learning with Diffusion-Weighted MR Imaging for Clinical Outcome Prognostication in Cervical Cancer
Objectives: To explore the potential of Radiomics alone and in combination with a diffusion-weighted derived quantitative parameter, namely the apparent diffusion co-efficient (ADC), using supervised classification algorithms in the prediction of outcomes and prognosis. Materials and Methods: Retros...
Autores principales: | Jajodia, Ankush, Gupta, Ayushi, Prosch, Helmut, Mayerhoefer, Marius, Mitra, Swarupa, Pasricha, Sunil, Mehta, Anurag, Puri, Sunil, Chaturvedi, Arvind |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8396356/ https://www.ncbi.nlm.nih.gov/pubmed/34449713 http://dx.doi.org/10.3390/tomography7030031 |
Ejemplares similares
-
Combined Diagnostic Accuracy of Diffusion and Perfusion MR Imaging to Differentiate Radiation-Induced Necrosis from Recurrence in Glioblastoma
por: Jajodia, Ankush, et al.
Publicado: (2022) -
Imaging in corona virus disease 2019 (COVID-19)—A Scoping review
por: Jajodia, Ankush, et al.
Publicado: (2020) -
Rare Case of Spontaneous Pneumorrhachis in a Young Male with COVID-19
por: Reddy, Vikas, et al.
Publicado: (2021) -
Role of ADC values in assessing clinical response and identifying residual disease post-chemo radiation in uterine cervix cancer
por: Jajodia, Ankush, et al.
Publicado: (2019) -
Large Symptomatic Sclerosing Pneumocytoma in a Young Male Smoker—A Rare and Deceptive Presentation
por: Pasricha, Sunil, et al.
Publicado: (2022)