Cargando…
An Enhanced Insect Pest Counter Based on Saliency Map and Improved Non-Maximum Suppression
SIMPLE SUMMARY: Simple Summary: Accurately counting the number of insect pests from digital images captured on yellow sticky traps remains a challenge in the field of insect pest monitoring. This paper develops a new approach to counting the number of insect pests using a saliency map and improved n...
Autores principales: | Guo, Qingwen, Wang, Chuntao, Xiao, Deqin, Huang, Qiong |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8396445/ https://www.ncbi.nlm.nih.gov/pubmed/34442271 http://dx.doi.org/10.3390/insects12080705 |
Ejemplares similares
-
FESNet: Frequency-Enhanced Saliency Detection Network for Grain Pest Segmentation
por: Yu, Junwei, et al.
Publicado: (2023) -
Saliency Mapping Enhanced by Structure Tensor
por: He, Zhiyong, et al.
Publicado: (2015) -
Localization and Classification of Paddy Field Pests using a Saliency Map and Deep Convolutional Neural Network
por: Liu, Ziyi, et al.
Publicado: (2016) -
Sanitation Improves Stored Product Insect Pest Management
por: Morrison, William R., et al.
Publicado: (2019) -
An Improved YOLOX Algorithm for Forest Insect Pest Detection
por: Huang, Jiyu, et al.
Publicado: (2022)