Cargando…

Reconstruction of the Diaminopimelic Acid Pathway to Promote L-lysine Production in Corynebacterium glutamicum

The dehydrogenase pathway and the succinylase pathway are involved in the synthesis of L-lysine in Corynebacterium glutamicum. Despite the low contribution rate to L-lysine production, the dehydrogenase pathway is favorable for its simple steps and potential to increase the production of L-lysine. T...

Descripción completa

Detalles Bibliográficos
Autores principales: Liu, Ning, Zhang, Ting-Ting, Rao, Zhi-Ming, Zhang, Wei-Guo, Xu, Jian-Zhong
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8396482/
https://www.ncbi.nlm.nih.gov/pubmed/34445771
http://dx.doi.org/10.3390/ijms22169065
Descripción
Sumario:The dehydrogenase pathway and the succinylase pathway are involved in the synthesis of L-lysine in Corynebacterium glutamicum. Despite the low contribution rate to L-lysine production, the dehydrogenase pathway is favorable for its simple steps and potential to increase the production of L-lysine. The effect of ammonium (NH(4)(+)) concentration on L-lysine biosynthesis was investigated, and the results indicated that the biosynthesis of L-lysine can be promoted in a high NH(4)(+) environment. In order to reduce the requirement of NH(4)(+), the nitrogen source regulatory protein AmtR was knocked out, resulting in an 8.5% increase in L-lysine production (i.e., 52.3 ± 4.31 g/L). Subsequently, the dehydrogenase pathway was upregulated by blocking or weakening the tetrahydrodipicolinate succinylase (DapD)-coding gene dapD and overexpressing the ddh gene to further enhance L-lysine biosynthesis. The final strain XQ-5-W4 could produce 189 ± 8.7 g/L L-lysine with the maximum specific rate (q(Lys,max.)) of 0.35 ± 0.05 g/(g·h) in a 5-L jar fermenter. The L-lysine titer and q(Lys,max) achieved in this study is about 25.2% and 59.1% higher than that of the original strain without enhancement of dehydrogenase pathway, respectively. The results indicated that the dehydrogenase pathway could serve as a breakthrough point to reconstruct the diaminopimelic acid (DAP) pathway and promote L-lysine production.