Cargando…
SAG-DTA: Prediction of Drug–Target Affinity Using Self-Attention Graph Network
The prediction of drug–target affinity (DTA) is a crucial step for drug screening and discovery. In this study, a new graph-based prediction model named SAG-DTA (self-attention graph drug–target affinity) was implemented. Unlike previous graph-based methods, the proposed model utilized self-attentio...
Autores principales: | Zhang, Shugang, Jiang, Mingjian, Wang, Shuang, Wang, Xiaofeng, Wei, Zhiqiang, Li, Zhen |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8396496/ https://www.ncbi.nlm.nih.gov/pubmed/34445696 http://dx.doi.org/10.3390/ijms22168993 |
Ejemplares similares
-
Drug–target affinity prediction using graph neural network and contact maps
por: Jiang, Mingjian, et al.
Publicado: (2020) -
Sequence-based drug-target affinity prediction using weighted graph neural networks
por: Jiang, Mingjian, et al.
Publicado: (2022) -
GraphATT-DTA: Attention-Based Novel Representation of Interaction to Predict Drug-Target Binding Affinity
por: Bae, Haelee, et al.
Publicado: (2022) -
CSatDTA: Prediction of Drug–Target Binding Affinity Using Convolution Model with Self-Attention
por: Ghimire, Ashutosh, et al.
Publicado: (2022) -
MGraphDTA: deep multiscale graph neural network for explainable drug–target binding affinity prediction
por: Yang, Ziduo, et al.
Publicado: (2022)