Cargando…
Altered Differentiation of Tendon-Derived Stem Cells in Diabetic Conditions Mediated by Macrophage Migration Inhibitory Factor
The purpose of our study was to evaluate the role of macrophage migration inhibitory factor (MIF) in the differentiation of tendon-derived stem cells (TdSCs) under hyperglycemic conditions. In the in vivo experiment, rats were classified into diabetic (DM) and non-DM groups depending on the intraper...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8396498/ https://www.ncbi.nlm.nih.gov/pubmed/34445689 http://dx.doi.org/10.3390/ijms22168983 |
_version_ | 1783744386611281920 |
---|---|
author | Kim, Du-Hwan Noh, Sun-Up Chae, Seoung-Wan Kim, Sang-Jun Lee, Yong-Taek |
author_facet | Kim, Du-Hwan Noh, Sun-Up Chae, Seoung-Wan Kim, Sang-Jun Lee, Yong-Taek |
author_sort | Kim, Du-Hwan |
collection | PubMed |
description | The purpose of our study was to evaluate the role of macrophage migration inhibitory factor (MIF) in the differentiation of tendon-derived stem cells (TdSCs) under hyperglycemic conditions. In the in vivo experiment, rats were classified into diabetic (DM) and non-DM groups depending on the intraperitoneal streptozotocin (STZ) or saline injection. Twelve-week after STZ injection, the supraspinatus tendon was harvested and prepared for histological evaluation and real-time reverse transcription polymerase chain reaction for osteochondrogenic (aggrecan, BMP-2, and Sox9) and tenogenic (Egr1, Mkx, scleraxis, type 1 collagen, and Tnmd) markers. For the in vitro experiment, TdSCs were isolated from healthy rat Achilles tendons. Cultured TdSCs were treated with methylglyoxal and recombinant MIF or MIF gene knockdown to determine the effect of hyperglycemic conditions and MIF on the differentiation function of TdSCs. These conditions were classified into four groups: hyperglycemic-control group, hyperglycemic-recombinant-MIF group, hyperglycemic-knockdown-MIF group, and normal-control group. The mRNA expression of osteochondrogenic and tenogenic markers was compared among the groups. In the in vivo experiment, the mRNA expression of all osteochondrogenic and tenogenic differentiation markers in the DM group was significantly higher and lower than that in the non-DM group, respectively. Similarly, in the in vitro experiments, the expression of all osteochondrogenic and tenogenic differentiation markers was significantly upregulated and downregulated, respectively, in the hyperglycemic-control group compared to that in the normal-control group. The hyperglycemic-knockdown-MIF group demonstrated significantly decreased expression of all osteochondrogenic differentiation markers and increased expression of only some tenogenic differentiation markers compared with the hyperglycemic-control group. In contrast, the hyperglycemic-recombinant-MIF group showed significantly increased expression of all osteochondrogenic differentiation markers, but no significant difference in any tenogenic marker level, compared to the hyperglycemic-control group. These results suggest that tendon homeostasis could be affected by hyperglycemic conditions, and MIF appears to alter the differentiation of TdSCs via enhancement of the osteochondrogenic differentiation in hyperglycemic conditions. These are preliminary findings, and must be confirmed in a further study. |
format | Online Article Text |
id | pubmed-8396498 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-83964982021-08-28 Altered Differentiation of Tendon-Derived Stem Cells in Diabetic Conditions Mediated by Macrophage Migration Inhibitory Factor Kim, Du-Hwan Noh, Sun-Up Chae, Seoung-Wan Kim, Sang-Jun Lee, Yong-Taek Int J Mol Sci Article The purpose of our study was to evaluate the role of macrophage migration inhibitory factor (MIF) in the differentiation of tendon-derived stem cells (TdSCs) under hyperglycemic conditions. In the in vivo experiment, rats were classified into diabetic (DM) and non-DM groups depending on the intraperitoneal streptozotocin (STZ) or saline injection. Twelve-week after STZ injection, the supraspinatus tendon was harvested and prepared for histological evaluation and real-time reverse transcription polymerase chain reaction for osteochondrogenic (aggrecan, BMP-2, and Sox9) and tenogenic (Egr1, Mkx, scleraxis, type 1 collagen, and Tnmd) markers. For the in vitro experiment, TdSCs were isolated from healthy rat Achilles tendons. Cultured TdSCs were treated with methylglyoxal and recombinant MIF or MIF gene knockdown to determine the effect of hyperglycemic conditions and MIF on the differentiation function of TdSCs. These conditions were classified into four groups: hyperglycemic-control group, hyperglycemic-recombinant-MIF group, hyperglycemic-knockdown-MIF group, and normal-control group. The mRNA expression of osteochondrogenic and tenogenic markers was compared among the groups. In the in vivo experiment, the mRNA expression of all osteochondrogenic and tenogenic differentiation markers in the DM group was significantly higher and lower than that in the non-DM group, respectively. Similarly, in the in vitro experiments, the expression of all osteochondrogenic and tenogenic differentiation markers was significantly upregulated and downregulated, respectively, in the hyperglycemic-control group compared to that in the normal-control group. The hyperglycemic-knockdown-MIF group demonstrated significantly decreased expression of all osteochondrogenic differentiation markers and increased expression of only some tenogenic differentiation markers compared with the hyperglycemic-control group. In contrast, the hyperglycemic-recombinant-MIF group showed significantly increased expression of all osteochondrogenic differentiation markers, but no significant difference in any tenogenic marker level, compared to the hyperglycemic-control group. These results suggest that tendon homeostasis could be affected by hyperglycemic conditions, and MIF appears to alter the differentiation of TdSCs via enhancement of the osteochondrogenic differentiation in hyperglycemic conditions. These are preliminary findings, and must be confirmed in a further study. MDPI 2021-08-20 /pmc/articles/PMC8396498/ /pubmed/34445689 http://dx.doi.org/10.3390/ijms22168983 Text en © 2021 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Kim, Du-Hwan Noh, Sun-Up Chae, Seoung-Wan Kim, Sang-Jun Lee, Yong-Taek Altered Differentiation of Tendon-Derived Stem Cells in Diabetic Conditions Mediated by Macrophage Migration Inhibitory Factor |
title | Altered Differentiation of Tendon-Derived Stem Cells in Diabetic Conditions Mediated by Macrophage Migration Inhibitory Factor |
title_full | Altered Differentiation of Tendon-Derived Stem Cells in Diabetic Conditions Mediated by Macrophage Migration Inhibitory Factor |
title_fullStr | Altered Differentiation of Tendon-Derived Stem Cells in Diabetic Conditions Mediated by Macrophage Migration Inhibitory Factor |
title_full_unstemmed | Altered Differentiation of Tendon-Derived Stem Cells in Diabetic Conditions Mediated by Macrophage Migration Inhibitory Factor |
title_short | Altered Differentiation of Tendon-Derived Stem Cells in Diabetic Conditions Mediated by Macrophage Migration Inhibitory Factor |
title_sort | altered differentiation of tendon-derived stem cells in diabetic conditions mediated by macrophage migration inhibitory factor |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8396498/ https://www.ncbi.nlm.nih.gov/pubmed/34445689 http://dx.doi.org/10.3390/ijms22168983 |
work_keys_str_mv | AT kimduhwan altereddifferentiationoftendonderivedstemcellsindiabeticconditionsmediatedbymacrophagemigrationinhibitoryfactor AT nohsunup altereddifferentiationoftendonderivedstemcellsindiabeticconditionsmediatedbymacrophagemigrationinhibitoryfactor AT chaeseoungwan altereddifferentiationoftendonderivedstemcellsindiabeticconditionsmediatedbymacrophagemigrationinhibitoryfactor AT kimsangjun altereddifferentiationoftendonderivedstemcellsindiabeticconditionsmediatedbymacrophagemigrationinhibitoryfactor AT leeyongtaek altereddifferentiationoftendonderivedstemcellsindiabeticconditionsmediatedbymacrophagemigrationinhibitoryfactor |