Cargando…
Three-Body Excitations in Fock-Space Coupled-Cluster: Fourth Order Perturbation Correction to Electron Affinity and Its Relation to Bondonic Formalism
In this paper, we present a formulation of highly correlated Fock-space multi-reference coupled-cluster (FSMRCC) methods, including approximate triples on top of the FSMRCC with singles and doubles, which correct the electron affinities by at least at third and up to the fourth order in perturbation...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8396530/ https://www.ncbi.nlm.nih.gov/pubmed/34445657 http://dx.doi.org/10.3390/ijms22168953 |
_version_ | 1783744394219749376 |
---|---|
author | Basumallick, Suhita Putz, Mihai V. Pal, Sourav |
author_facet | Basumallick, Suhita Putz, Mihai V. Pal, Sourav |
author_sort | Basumallick, Suhita |
collection | PubMed |
description | In this paper, we present a formulation of highly correlated Fock-space multi-reference coupled-cluster (FSMRCC) methods, including approximate triples on top of the FSMRCC with singles and doubles, which correct the electron affinities by at least at third and up to the fourth order in perturbation. We discuss various partial fourth-order schemes, which are reliable and yet computationally more efficient than the full fourth-order triples scheme. The third-order scheme is called MRCCSD+T(*)(3). We present two approximate fourth-order schemes, MRCCSD+T(*)−a(4) and MRCCSD+T(*)(4). The results that are presented allow one to choose an appropriate fourth-order scheme, which is less expensive and right for the problem. All these schemes are based on the effective Hamiltonian scheme, and provide a direct calculation of the vertical electron affinities. We apply these schemes to a prototype Li(2) molecule, using four different basis sets, as well as BeO and CH(+). We have calculated the vertical electron affinities of Li(2) at the geometry of the neutral Li(2) molecule. We also present the vertical ionization potentials of the Li(2) anion at the geometry of the anion ground state. We have also shown how to calculate adiabatic electron affinity, though in that case we lose the advantages of direct calculation. BeO has been examined in two basis sets. For CH(+), four different basis sets have been used. We have presented the partial fourth-order schemes to the EA in all the basis sets. The results are analyzed to illustrate the importance of triples, as well as highlight computationally efficient partial fourth-order schemes. The choice of the basis set on the electron affinity calculation is also emphasized. Comparisons with available experimental and theoretical results are presented. The general fourth-order schemes, which are conceptually equivalent with the Fock-space multi-reference coupled-cluster singles, doubles, and triplets (MRCCSD+T) methods, based on bondonic formalism, are also presented here in a composed way, for quantum electronic affinity. |
format | Online Article Text |
id | pubmed-8396530 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-83965302021-08-28 Three-Body Excitations in Fock-Space Coupled-Cluster: Fourth Order Perturbation Correction to Electron Affinity and Its Relation to Bondonic Formalism Basumallick, Suhita Putz, Mihai V. Pal, Sourav Int J Mol Sci Article In this paper, we present a formulation of highly correlated Fock-space multi-reference coupled-cluster (FSMRCC) methods, including approximate triples on top of the FSMRCC with singles and doubles, which correct the electron affinities by at least at third and up to the fourth order in perturbation. We discuss various partial fourth-order schemes, which are reliable and yet computationally more efficient than the full fourth-order triples scheme. The third-order scheme is called MRCCSD+T(*)(3). We present two approximate fourth-order schemes, MRCCSD+T(*)−a(4) and MRCCSD+T(*)(4). The results that are presented allow one to choose an appropriate fourth-order scheme, which is less expensive and right for the problem. All these schemes are based on the effective Hamiltonian scheme, and provide a direct calculation of the vertical electron affinities. We apply these schemes to a prototype Li(2) molecule, using four different basis sets, as well as BeO and CH(+). We have calculated the vertical electron affinities of Li(2) at the geometry of the neutral Li(2) molecule. We also present the vertical ionization potentials of the Li(2) anion at the geometry of the anion ground state. We have also shown how to calculate adiabatic electron affinity, though in that case we lose the advantages of direct calculation. BeO has been examined in two basis sets. For CH(+), four different basis sets have been used. We have presented the partial fourth-order schemes to the EA in all the basis sets. The results are analyzed to illustrate the importance of triples, as well as highlight computationally efficient partial fourth-order schemes. The choice of the basis set on the electron affinity calculation is also emphasized. Comparisons with available experimental and theoretical results are presented. The general fourth-order schemes, which are conceptually equivalent with the Fock-space multi-reference coupled-cluster singles, doubles, and triplets (MRCCSD+T) methods, based on bondonic formalism, are also presented here in a composed way, for quantum electronic affinity. MDPI 2021-08-19 /pmc/articles/PMC8396530/ /pubmed/34445657 http://dx.doi.org/10.3390/ijms22168953 Text en © 2021 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Basumallick, Suhita Putz, Mihai V. Pal, Sourav Three-Body Excitations in Fock-Space Coupled-Cluster: Fourth Order Perturbation Correction to Electron Affinity and Its Relation to Bondonic Formalism |
title | Three-Body Excitations in Fock-Space Coupled-Cluster: Fourth Order Perturbation Correction to Electron Affinity and Its Relation to Bondonic Formalism |
title_full | Three-Body Excitations in Fock-Space Coupled-Cluster: Fourth Order Perturbation Correction to Electron Affinity and Its Relation to Bondonic Formalism |
title_fullStr | Three-Body Excitations in Fock-Space Coupled-Cluster: Fourth Order Perturbation Correction to Electron Affinity and Its Relation to Bondonic Formalism |
title_full_unstemmed | Three-Body Excitations in Fock-Space Coupled-Cluster: Fourth Order Perturbation Correction to Electron Affinity and Its Relation to Bondonic Formalism |
title_short | Three-Body Excitations in Fock-Space Coupled-Cluster: Fourth Order Perturbation Correction to Electron Affinity and Its Relation to Bondonic Formalism |
title_sort | three-body excitations in fock-space coupled-cluster: fourth order perturbation correction to electron affinity and its relation to bondonic formalism |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8396530/ https://www.ncbi.nlm.nih.gov/pubmed/34445657 http://dx.doi.org/10.3390/ijms22168953 |
work_keys_str_mv | AT basumallicksuhita threebodyexcitationsinfockspacecoupledclusterfourthorderperturbationcorrectiontoelectronaffinityanditsrelationtobondonicformalism AT putzmihaiv threebodyexcitationsinfockspacecoupledclusterfourthorderperturbationcorrectiontoelectronaffinityanditsrelationtobondonicformalism AT palsourav threebodyexcitationsinfockspacecoupledclusterfourthorderperturbationcorrectiontoelectronaffinityanditsrelationtobondonicformalism |