Cargando…
SecProCT: In Silico Prediction of Human Secretory Proteins Based on Capsule Network and Transformer
Identifying secretory proteins from blood, saliva or other body fluids has become an effective method of diagnosing diseases. Existing secretory protein prediction methods are mainly based on conventional machine learning algorithms and are highly dependent on the feature set from the protein. In th...
Autores principales: | Du, Wei, Zhao, Xuan, Sun, Yu, Zheng, Lei, Li, Ying, Zhang, Yu |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8396571/ https://www.ncbi.nlm.nih.gov/pubmed/34445760 http://dx.doi.org/10.3390/ijms22169054 |
Ejemplares similares
-
CapsNet-SSP: multilane capsule network for predicting human saliva-secretory proteins
por: Du, Wei, et al.
Publicado: (2020) -
In Candida albicans hyphae, Sec2p is physically associated with SEC2 mRNA on secretory vesicles
por: Caballero-Lima, David, et al.
Publicado: (2014) -
Computer forensics: InfoSec Pro guide
por: Cowen, David
Publicado: (2013) -
TRC40 can deliver short secretory proteins to the Sec61 translocon
por: Johnson, Nicholas, et al.
Publicado: (2012) -
The role of Sec3p in secretory vesicle targeting and exocyst complex assembly
por: Luo, Guangzuo, et al.
Publicado: (2014)