Cargando…
Low-Density Polyethylene Film Biodegradation Potential by Fungal Species from Thailand
Accumulated plastic waste in the environment is a serious problem that poses an ecological threat. Plastic waste has been reduced by initiating and applying different alternative methods from several perspectives, including fungal treatment. Biodegradation of 30 fungi from Thailand were screened in...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8396884/ https://www.ncbi.nlm.nih.gov/pubmed/34436133 http://dx.doi.org/10.3390/jof7080594 |
_version_ | 1783744477690593280 |
---|---|
author | Khruengsai, Sarunpron Sripahco, Teerapong Pripdeevech, Patcharee |
author_facet | Khruengsai, Sarunpron Sripahco, Teerapong Pripdeevech, Patcharee |
author_sort | Khruengsai, Sarunpron |
collection | PubMed |
description | Accumulated plastic waste in the environment is a serious problem that poses an ecological threat. Plastic waste has been reduced by initiating and applying different alternative methods from several perspectives, including fungal treatment. Biodegradation of 30 fungi from Thailand were screened in mineral salt medium agar containing low-density polyethylene (LDPE) films. Diaporthe italiana, Thyrostroma jaczewskii, Collectotrichum fructicola, and Stagonosporopsis citrulli were found to grow significantly by culturing with LDPE film as the only sole carbon source compared to those obtained from Aspergillus niger. These fungi were further cultured in mineral salt medium broth containing LDPE film as the sole carbon source for 90 days. The biodegradation ability of these fungi was evaluated from the amount of CO(2) and enzyme production. Different amounts of CO(2) were released from D. italiana, T. jaczewskii, C. fructicola, S. citrulli, and A. niger culturing with LDPE film, ranging from 0.45 to 1.45, 0.36 to 1.22, 0.45 to 1.45, 0.33 to 1.26, and 0.37 to 1.27 g/L, respectively. These fungi were able to secrete a large amount of laccase enzyme compared to manganese peroxidase, and lignin peroxidase enzymes detected under the same conditions. The degradation of LDPE films by culturing with these fungi was further determined. LDPE films cultured with D. italiana, T. jaczewskii, C. fructicola, S. citrulli, and A. niger showed weight loss of 43.90%, 46.34%, 48.78%, 45.12%, and 28.78%, respectively. The tensile strength of LDPE films cultured with D. italiana, T. jaczewskii, C. fructicola, S. citrulli, and A. niger also reduced significantly by 1.56, 1.78, 0.43, 1.86, and 3.34 MPa, respectively. The results from Fourier transform infrared spectroscopy (FTIR) reveal an increasing carbonyl index in LDPE films culturing with these fungi, especially C. fructicola. Analysis of LDPE films using scanning electron microscopy (SEM) confirmed the biodegradation by the presence of morphological changes such as cracks, scions, and holes on the surface of the film. The volatile organic compounds (VOCs) emitted from LDPE films cultured with these fungi were analyzed by gas chromatography-mass spectrometry (GC-MS). VOCs such as 1,3-dimethoxy-benzene, 1,3-dimethoxy-5-(1-methylethyl)-benzene, and 1,1-dimethoxy-decane were detected among these fungi. Overall, these fungi have the ability to break down and consume the LDPE film. The fungus C. fructicola is a promising resource for the biodegradation of LDPE which may be further applied in plastic degradation systems based on fungi. |
format | Online Article Text |
id | pubmed-8396884 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-83968842021-08-28 Low-Density Polyethylene Film Biodegradation Potential by Fungal Species from Thailand Khruengsai, Sarunpron Sripahco, Teerapong Pripdeevech, Patcharee J Fungi (Basel) Article Accumulated plastic waste in the environment is a serious problem that poses an ecological threat. Plastic waste has been reduced by initiating and applying different alternative methods from several perspectives, including fungal treatment. Biodegradation of 30 fungi from Thailand were screened in mineral salt medium agar containing low-density polyethylene (LDPE) films. Diaporthe italiana, Thyrostroma jaczewskii, Collectotrichum fructicola, and Stagonosporopsis citrulli were found to grow significantly by culturing with LDPE film as the only sole carbon source compared to those obtained from Aspergillus niger. These fungi were further cultured in mineral salt medium broth containing LDPE film as the sole carbon source for 90 days. The biodegradation ability of these fungi was evaluated from the amount of CO(2) and enzyme production. Different amounts of CO(2) were released from D. italiana, T. jaczewskii, C. fructicola, S. citrulli, and A. niger culturing with LDPE film, ranging from 0.45 to 1.45, 0.36 to 1.22, 0.45 to 1.45, 0.33 to 1.26, and 0.37 to 1.27 g/L, respectively. These fungi were able to secrete a large amount of laccase enzyme compared to manganese peroxidase, and lignin peroxidase enzymes detected under the same conditions. The degradation of LDPE films by culturing with these fungi was further determined. LDPE films cultured with D. italiana, T. jaczewskii, C. fructicola, S. citrulli, and A. niger showed weight loss of 43.90%, 46.34%, 48.78%, 45.12%, and 28.78%, respectively. The tensile strength of LDPE films cultured with D. italiana, T. jaczewskii, C. fructicola, S. citrulli, and A. niger also reduced significantly by 1.56, 1.78, 0.43, 1.86, and 3.34 MPa, respectively. The results from Fourier transform infrared spectroscopy (FTIR) reveal an increasing carbonyl index in LDPE films culturing with these fungi, especially C. fructicola. Analysis of LDPE films using scanning electron microscopy (SEM) confirmed the biodegradation by the presence of morphological changes such as cracks, scions, and holes on the surface of the film. The volatile organic compounds (VOCs) emitted from LDPE films cultured with these fungi were analyzed by gas chromatography-mass spectrometry (GC-MS). VOCs such as 1,3-dimethoxy-benzene, 1,3-dimethoxy-5-(1-methylethyl)-benzene, and 1,1-dimethoxy-decane were detected among these fungi. Overall, these fungi have the ability to break down and consume the LDPE film. The fungus C. fructicola is a promising resource for the biodegradation of LDPE which may be further applied in plastic degradation systems based on fungi. MDPI 2021-07-23 /pmc/articles/PMC8396884/ /pubmed/34436133 http://dx.doi.org/10.3390/jof7080594 Text en © 2021 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Khruengsai, Sarunpron Sripahco, Teerapong Pripdeevech, Patcharee Low-Density Polyethylene Film Biodegradation Potential by Fungal Species from Thailand |
title | Low-Density Polyethylene Film Biodegradation Potential by Fungal Species from Thailand |
title_full | Low-Density Polyethylene Film Biodegradation Potential by Fungal Species from Thailand |
title_fullStr | Low-Density Polyethylene Film Biodegradation Potential by Fungal Species from Thailand |
title_full_unstemmed | Low-Density Polyethylene Film Biodegradation Potential by Fungal Species from Thailand |
title_short | Low-Density Polyethylene Film Biodegradation Potential by Fungal Species from Thailand |
title_sort | low-density polyethylene film biodegradation potential by fungal species from thailand |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8396884/ https://www.ncbi.nlm.nih.gov/pubmed/34436133 http://dx.doi.org/10.3390/jof7080594 |
work_keys_str_mv | AT khruengsaisarunpron lowdensitypolyethylenefilmbiodegradationpotentialbyfungalspeciesfromthailand AT sripahcoteerapong lowdensitypolyethylenefilmbiodegradationpotentialbyfungalspeciesfromthailand AT pripdeevechpatcharee lowdensitypolyethylenefilmbiodegradationpotentialbyfungalspeciesfromthailand |