Cargando…

Fetal Blood Flow and Genetic Mutations in Conotruncal Congenital Heart Disease

In congenital heart disease, the presence of structural defects affects blood flow in the heart and circulation. However, because the fetal circulation bypasses the lungs, fetuses with cyanotic heart defects can survive in utero but need prompt intervention to survive after birth. Tetralogy of Fallo...

Descripción completa

Detalles Bibliográficos
Autores principales: Dyer, Laura A., Rugonyi, Sandra
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8397097/
https://www.ncbi.nlm.nih.gov/pubmed/34436232
http://dx.doi.org/10.3390/jcdd8080090
_version_ 1783744537788678144
author Dyer, Laura A.
Rugonyi, Sandra
author_facet Dyer, Laura A.
Rugonyi, Sandra
author_sort Dyer, Laura A.
collection PubMed
description In congenital heart disease, the presence of structural defects affects blood flow in the heart and circulation. However, because the fetal circulation bypasses the lungs, fetuses with cyanotic heart defects can survive in utero but need prompt intervention to survive after birth. Tetralogy of Fallot and persistent truncus arteriosus are two of the most significant conotruncal heart defects. In both defects, blood access to the lungs is restricted or non-existent, and babies with these critical conditions need intervention right after birth. While there are known genetic mutations that lead to these critical heart defects, early perturbations in blood flow can independently lead to critical heart defects. In this paper, we start by comparing the fetal circulation with the neonatal and adult circulation, and reviewing how altered fetal blood flow can be used as a diagnostic tool to plan interventions. We then look at known factors that lead to tetralogy of Fallot and persistent truncus arteriosus: namely early perturbations in blood flow and mutations within VEGF-related pathways. The interplay between physical and genetic factors means that any one alteration can cause significant disruptions during development and underscore our need to better understand the effects of both blood flow and flow-responsive genes.
format Online
Article
Text
id pubmed-8397097
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-83970972021-08-28 Fetal Blood Flow and Genetic Mutations in Conotruncal Congenital Heart Disease Dyer, Laura A. Rugonyi, Sandra J Cardiovasc Dev Dis Review In congenital heart disease, the presence of structural defects affects blood flow in the heart and circulation. However, because the fetal circulation bypasses the lungs, fetuses with cyanotic heart defects can survive in utero but need prompt intervention to survive after birth. Tetralogy of Fallot and persistent truncus arteriosus are two of the most significant conotruncal heart defects. In both defects, blood access to the lungs is restricted or non-existent, and babies with these critical conditions need intervention right after birth. While there are known genetic mutations that lead to these critical heart defects, early perturbations in blood flow can independently lead to critical heart defects. In this paper, we start by comparing the fetal circulation with the neonatal and adult circulation, and reviewing how altered fetal blood flow can be used as a diagnostic tool to plan interventions. We then look at known factors that lead to tetralogy of Fallot and persistent truncus arteriosus: namely early perturbations in blood flow and mutations within VEGF-related pathways. The interplay between physical and genetic factors means that any one alteration can cause significant disruptions during development and underscore our need to better understand the effects of both blood flow and flow-responsive genes. MDPI 2021-07-30 /pmc/articles/PMC8397097/ /pubmed/34436232 http://dx.doi.org/10.3390/jcdd8080090 Text en © 2021 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
spellingShingle Review
Dyer, Laura A.
Rugonyi, Sandra
Fetal Blood Flow and Genetic Mutations in Conotruncal Congenital Heart Disease
title Fetal Blood Flow and Genetic Mutations in Conotruncal Congenital Heart Disease
title_full Fetal Blood Flow and Genetic Mutations in Conotruncal Congenital Heart Disease
title_fullStr Fetal Blood Flow and Genetic Mutations in Conotruncal Congenital Heart Disease
title_full_unstemmed Fetal Blood Flow and Genetic Mutations in Conotruncal Congenital Heart Disease
title_short Fetal Blood Flow and Genetic Mutations in Conotruncal Congenital Heart Disease
title_sort fetal blood flow and genetic mutations in conotruncal congenital heart disease
topic Review
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8397097/
https://www.ncbi.nlm.nih.gov/pubmed/34436232
http://dx.doi.org/10.3390/jcdd8080090
work_keys_str_mv AT dyerlauraa fetalbloodflowandgeneticmutationsinconotruncalcongenitalheartdisease
AT rugonyisandra fetalbloodflowandgeneticmutationsinconotruncalcongenitalheartdisease