Cargando…
Comparison of Deep Learning Models for Cervical Vertebral Maturation Stage Classification on Lateral Cephalometric Radiographs
The purpose of this study is to evaluate and compare the performance of six state-of-the-art convolutional neural network (CNN)-based deep learning models for cervical vertebral maturation (CVM) on lateral cephalometric radiographs, and implement visualization of CVM classification for each model us...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8397111/ https://www.ncbi.nlm.nih.gov/pubmed/34441887 http://dx.doi.org/10.3390/jcm10163591 |
Sumario: | The purpose of this study is to evaluate and compare the performance of six state-of-the-art convolutional neural network (CNN)-based deep learning models for cervical vertebral maturation (CVM) on lateral cephalometric radiographs, and implement visualization of CVM classification for each model using gradient-weighted class activation map (Grad-CAM) technology. A total of 600 lateral cephalometric radiographs obtained from patients aged 6–19 years between 2013 and 2020 in Pusan National University Dental Hospital were used in this study. ResNet-18, MobileNet-v2, ResNet-50, ResNet-101, Inception-v3, and Inception-ResNet-v2 were tested to determine the optimal pre-trained network architecture. Multi-class classification metrics, accuracy, recall, precision, F1-score, and area under the curve (AUC) values from the receiver operating characteristic (ROC) curve were used to evaluate the performance of the models. All deep learning models demonstrated more than 90% accuracy, with Inception-ResNet-v2 performing the best, relatively. In addition, visualizing each deep learning model using Grad-CAM led to a primary focus on the cervical vertebrae and surrounding structures. The use of these deep learning models in clinical practice will facilitate dental practitioners in making accurate diagnoses and treatment plans. |
---|