Cargando…
A Multi-Criteria Assessment Strategy for 3D Printed Porous Polyetheretherketone (PEEK) Patient-Specific Implants for Orbital Wall Reconstruction
Pure orbital blowout fractures occur within the confines of the internal orbital wall. Restoration of orbital form and volume is paramount to prevent functional and esthetic impairment. The anatomical peculiarity of the orbit has encouraged surgeons to develop implants with customized features to re...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8397160/ https://www.ncbi.nlm.nih.gov/pubmed/34441859 http://dx.doi.org/10.3390/jcm10163563 |
_version_ | 1783744552414216192 |
---|---|
author | Sharma, Neha Welker, Dennis Aghlmandi, Soheila Maintz, Michaela Zeilhofer, Hans-Florian Honigmann, Philipp Seifert, Thomas Thieringer, Florian M. |
author_facet | Sharma, Neha Welker, Dennis Aghlmandi, Soheila Maintz, Michaela Zeilhofer, Hans-Florian Honigmann, Philipp Seifert, Thomas Thieringer, Florian M. |
author_sort | Sharma, Neha |
collection | PubMed |
description | Pure orbital blowout fractures occur within the confines of the internal orbital wall. Restoration of orbital form and volume is paramount to prevent functional and esthetic impairment. The anatomical peculiarity of the orbit has encouraged surgeons to develop implants with customized features to restore its architecture. This has resulted in worldwide clinical demand for patient-specific implants (PSIs) designed to fit precisely in the patient’s unique anatomy. Material extrusion or Fused filament fabrication (FFF) three-dimensional (3D) printing technology has enabled the fabrication of implant-grade polymers such as Polyetheretherketone (PEEK), paving the way for a more sophisticated generation of biomaterials. This study evaluates the FFF 3D printed PEEK orbital mesh customized implants with a metric considering the relevant design, biomechanical, and morphological parameters. The performance of the implants is studied as a function of varying thicknesses and porous design constructs through a finite element (FE) based computational model and a decision matrix based statistical approach. The maximum stress values achieved in our results predict the high durability of the implants, and the maximum deformation values were under one-tenth of a millimeter (mm) domain in all the implant profile configurations. The circular patterned implant (0.9 mm) had the best performance score. The study demonstrates that compounding multi-design computational analysis with 3D printing can be beneficial for the optimal restoration of the orbital floor. |
format | Online Article Text |
id | pubmed-8397160 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-83971602021-08-28 A Multi-Criteria Assessment Strategy for 3D Printed Porous Polyetheretherketone (PEEK) Patient-Specific Implants for Orbital Wall Reconstruction Sharma, Neha Welker, Dennis Aghlmandi, Soheila Maintz, Michaela Zeilhofer, Hans-Florian Honigmann, Philipp Seifert, Thomas Thieringer, Florian M. J Clin Med Article Pure orbital blowout fractures occur within the confines of the internal orbital wall. Restoration of orbital form and volume is paramount to prevent functional and esthetic impairment. The anatomical peculiarity of the orbit has encouraged surgeons to develop implants with customized features to restore its architecture. This has resulted in worldwide clinical demand for patient-specific implants (PSIs) designed to fit precisely in the patient’s unique anatomy. Material extrusion or Fused filament fabrication (FFF) three-dimensional (3D) printing technology has enabled the fabrication of implant-grade polymers such as Polyetheretherketone (PEEK), paving the way for a more sophisticated generation of biomaterials. This study evaluates the FFF 3D printed PEEK orbital mesh customized implants with a metric considering the relevant design, biomechanical, and morphological parameters. The performance of the implants is studied as a function of varying thicknesses and porous design constructs through a finite element (FE) based computational model and a decision matrix based statistical approach. The maximum stress values achieved in our results predict the high durability of the implants, and the maximum deformation values were under one-tenth of a millimeter (mm) domain in all the implant profile configurations. The circular patterned implant (0.9 mm) had the best performance score. The study demonstrates that compounding multi-design computational analysis with 3D printing can be beneficial for the optimal restoration of the orbital floor. MDPI 2021-08-13 /pmc/articles/PMC8397160/ /pubmed/34441859 http://dx.doi.org/10.3390/jcm10163563 Text en © 2021 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Sharma, Neha Welker, Dennis Aghlmandi, Soheila Maintz, Michaela Zeilhofer, Hans-Florian Honigmann, Philipp Seifert, Thomas Thieringer, Florian M. A Multi-Criteria Assessment Strategy for 3D Printed Porous Polyetheretherketone (PEEK) Patient-Specific Implants for Orbital Wall Reconstruction |
title | A Multi-Criteria Assessment Strategy for 3D Printed Porous Polyetheretherketone (PEEK) Patient-Specific Implants for Orbital Wall Reconstruction |
title_full | A Multi-Criteria Assessment Strategy for 3D Printed Porous Polyetheretherketone (PEEK) Patient-Specific Implants for Orbital Wall Reconstruction |
title_fullStr | A Multi-Criteria Assessment Strategy for 3D Printed Porous Polyetheretherketone (PEEK) Patient-Specific Implants for Orbital Wall Reconstruction |
title_full_unstemmed | A Multi-Criteria Assessment Strategy for 3D Printed Porous Polyetheretherketone (PEEK) Patient-Specific Implants for Orbital Wall Reconstruction |
title_short | A Multi-Criteria Assessment Strategy for 3D Printed Porous Polyetheretherketone (PEEK) Patient-Specific Implants for Orbital Wall Reconstruction |
title_sort | multi-criteria assessment strategy for 3d printed porous polyetheretherketone (peek) patient-specific implants for orbital wall reconstruction |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8397160/ https://www.ncbi.nlm.nih.gov/pubmed/34441859 http://dx.doi.org/10.3390/jcm10163563 |
work_keys_str_mv | AT sharmaneha amulticriteriaassessmentstrategyfor3dprintedporouspolyetheretherketonepeekpatientspecificimplantsfororbitalwallreconstruction AT welkerdennis amulticriteriaassessmentstrategyfor3dprintedporouspolyetheretherketonepeekpatientspecificimplantsfororbitalwallreconstruction AT aghlmandisoheila amulticriteriaassessmentstrategyfor3dprintedporouspolyetheretherketonepeekpatientspecificimplantsfororbitalwallreconstruction AT maintzmichaela amulticriteriaassessmentstrategyfor3dprintedporouspolyetheretherketonepeekpatientspecificimplantsfororbitalwallreconstruction AT zeilhoferhansflorian amulticriteriaassessmentstrategyfor3dprintedporouspolyetheretherketonepeekpatientspecificimplantsfororbitalwallreconstruction AT honigmannphilipp amulticriteriaassessmentstrategyfor3dprintedporouspolyetheretherketonepeekpatientspecificimplantsfororbitalwallreconstruction AT seifertthomas amulticriteriaassessmentstrategyfor3dprintedporouspolyetheretherketonepeekpatientspecificimplantsfororbitalwallreconstruction AT thieringerflorianm amulticriteriaassessmentstrategyfor3dprintedporouspolyetheretherketonepeekpatientspecificimplantsfororbitalwallreconstruction AT sharmaneha multicriteriaassessmentstrategyfor3dprintedporouspolyetheretherketonepeekpatientspecificimplantsfororbitalwallreconstruction AT welkerdennis multicriteriaassessmentstrategyfor3dprintedporouspolyetheretherketonepeekpatientspecificimplantsfororbitalwallreconstruction AT aghlmandisoheila multicriteriaassessmentstrategyfor3dprintedporouspolyetheretherketonepeekpatientspecificimplantsfororbitalwallreconstruction AT maintzmichaela multicriteriaassessmentstrategyfor3dprintedporouspolyetheretherketonepeekpatientspecificimplantsfororbitalwallreconstruction AT zeilhoferhansflorian multicriteriaassessmentstrategyfor3dprintedporouspolyetheretherketonepeekpatientspecificimplantsfororbitalwallreconstruction AT honigmannphilipp multicriteriaassessmentstrategyfor3dprintedporouspolyetheretherketonepeekpatientspecificimplantsfororbitalwallreconstruction AT seifertthomas multicriteriaassessmentstrategyfor3dprintedporouspolyetheretherketonepeekpatientspecificimplantsfororbitalwallreconstruction AT thieringerflorianm multicriteriaassessmentstrategyfor3dprintedporouspolyetheretherketonepeekpatientspecificimplantsfororbitalwallreconstruction |