Cargando…

A Multi-Criteria Assessment Strategy for 3D Printed Porous Polyetheretherketone (PEEK) Patient-Specific Implants for Orbital Wall Reconstruction

Pure orbital blowout fractures occur within the confines of the internal orbital wall. Restoration of orbital form and volume is paramount to prevent functional and esthetic impairment. The anatomical peculiarity of the orbit has encouraged surgeons to develop implants with customized features to re...

Descripción completa

Detalles Bibliográficos
Autores principales: Sharma, Neha, Welker, Dennis, Aghlmandi, Soheila, Maintz, Michaela, Zeilhofer, Hans-Florian, Honigmann, Philipp, Seifert, Thomas, Thieringer, Florian M.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8397160/
https://www.ncbi.nlm.nih.gov/pubmed/34441859
http://dx.doi.org/10.3390/jcm10163563
_version_ 1783744552414216192
author Sharma, Neha
Welker, Dennis
Aghlmandi, Soheila
Maintz, Michaela
Zeilhofer, Hans-Florian
Honigmann, Philipp
Seifert, Thomas
Thieringer, Florian M.
author_facet Sharma, Neha
Welker, Dennis
Aghlmandi, Soheila
Maintz, Michaela
Zeilhofer, Hans-Florian
Honigmann, Philipp
Seifert, Thomas
Thieringer, Florian M.
author_sort Sharma, Neha
collection PubMed
description Pure orbital blowout fractures occur within the confines of the internal orbital wall. Restoration of orbital form and volume is paramount to prevent functional and esthetic impairment. The anatomical peculiarity of the orbit has encouraged surgeons to develop implants with customized features to restore its architecture. This has resulted in worldwide clinical demand for patient-specific implants (PSIs) designed to fit precisely in the patient’s unique anatomy. Material extrusion or Fused filament fabrication (FFF) three-dimensional (3D) printing technology has enabled the fabrication of implant-grade polymers such as Polyetheretherketone (PEEK), paving the way for a more sophisticated generation of biomaterials. This study evaluates the FFF 3D printed PEEK orbital mesh customized implants with a metric considering the relevant design, biomechanical, and morphological parameters. The performance of the implants is studied as a function of varying thicknesses and porous design constructs through a finite element (FE) based computational model and a decision matrix based statistical approach. The maximum stress values achieved in our results predict the high durability of the implants, and the maximum deformation values were under one-tenth of a millimeter (mm) domain in all the implant profile configurations. The circular patterned implant (0.9 mm) had the best performance score. The study demonstrates that compounding multi-design computational analysis with 3D printing can be beneficial for the optimal restoration of the orbital floor.
format Online
Article
Text
id pubmed-8397160
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-83971602021-08-28 A Multi-Criteria Assessment Strategy for 3D Printed Porous Polyetheretherketone (PEEK) Patient-Specific Implants for Orbital Wall Reconstruction Sharma, Neha Welker, Dennis Aghlmandi, Soheila Maintz, Michaela Zeilhofer, Hans-Florian Honigmann, Philipp Seifert, Thomas Thieringer, Florian M. J Clin Med Article Pure orbital blowout fractures occur within the confines of the internal orbital wall. Restoration of orbital form and volume is paramount to prevent functional and esthetic impairment. The anatomical peculiarity of the orbit has encouraged surgeons to develop implants with customized features to restore its architecture. This has resulted in worldwide clinical demand for patient-specific implants (PSIs) designed to fit precisely in the patient’s unique anatomy. Material extrusion or Fused filament fabrication (FFF) three-dimensional (3D) printing technology has enabled the fabrication of implant-grade polymers such as Polyetheretherketone (PEEK), paving the way for a more sophisticated generation of biomaterials. This study evaluates the FFF 3D printed PEEK orbital mesh customized implants with a metric considering the relevant design, biomechanical, and morphological parameters. The performance of the implants is studied as a function of varying thicknesses and porous design constructs through a finite element (FE) based computational model and a decision matrix based statistical approach. The maximum stress values achieved in our results predict the high durability of the implants, and the maximum deformation values were under one-tenth of a millimeter (mm) domain in all the implant profile configurations. The circular patterned implant (0.9 mm) had the best performance score. The study demonstrates that compounding multi-design computational analysis with 3D printing can be beneficial for the optimal restoration of the orbital floor. MDPI 2021-08-13 /pmc/articles/PMC8397160/ /pubmed/34441859 http://dx.doi.org/10.3390/jcm10163563 Text en © 2021 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Sharma, Neha
Welker, Dennis
Aghlmandi, Soheila
Maintz, Michaela
Zeilhofer, Hans-Florian
Honigmann, Philipp
Seifert, Thomas
Thieringer, Florian M.
A Multi-Criteria Assessment Strategy for 3D Printed Porous Polyetheretherketone (PEEK) Patient-Specific Implants for Orbital Wall Reconstruction
title A Multi-Criteria Assessment Strategy for 3D Printed Porous Polyetheretherketone (PEEK) Patient-Specific Implants for Orbital Wall Reconstruction
title_full A Multi-Criteria Assessment Strategy for 3D Printed Porous Polyetheretherketone (PEEK) Patient-Specific Implants for Orbital Wall Reconstruction
title_fullStr A Multi-Criteria Assessment Strategy for 3D Printed Porous Polyetheretherketone (PEEK) Patient-Specific Implants for Orbital Wall Reconstruction
title_full_unstemmed A Multi-Criteria Assessment Strategy for 3D Printed Porous Polyetheretherketone (PEEK) Patient-Specific Implants for Orbital Wall Reconstruction
title_short A Multi-Criteria Assessment Strategy for 3D Printed Porous Polyetheretherketone (PEEK) Patient-Specific Implants for Orbital Wall Reconstruction
title_sort multi-criteria assessment strategy for 3d printed porous polyetheretherketone (peek) patient-specific implants for orbital wall reconstruction
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8397160/
https://www.ncbi.nlm.nih.gov/pubmed/34441859
http://dx.doi.org/10.3390/jcm10163563
work_keys_str_mv AT sharmaneha amulticriteriaassessmentstrategyfor3dprintedporouspolyetheretherketonepeekpatientspecificimplantsfororbitalwallreconstruction
AT welkerdennis amulticriteriaassessmentstrategyfor3dprintedporouspolyetheretherketonepeekpatientspecificimplantsfororbitalwallreconstruction
AT aghlmandisoheila amulticriteriaassessmentstrategyfor3dprintedporouspolyetheretherketonepeekpatientspecificimplantsfororbitalwallreconstruction
AT maintzmichaela amulticriteriaassessmentstrategyfor3dprintedporouspolyetheretherketonepeekpatientspecificimplantsfororbitalwallreconstruction
AT zeilhoferhansflorian amulticriteriaassessmentstrategyfor3dprintedporouspolyetheretherketonepeekpatientspecificimplantsfororbitalwallreconstruction
AT honigmannphilipp amulticriteriaassessmentstrategyfor3dprintedporouspolyetheretherketonepeekpatientspecificimplantsfororbitalwallreconstruction
AT seifertthomas amulticriteriaassessmentstrategyfor3dprintedporouspolyetheretherketonepeekpatientspecificimplantsfororbitalwallreconstruction
AT thieringerflorianm amulticriteriaassessmentstrategyfor3dprintedporouspolyetheretherketonepeekpatientspecificimplantsfororbitalwallreconstruction
AT sharmaneha multicriteriaassessmentstrategyfor3dprintedporouspolyetheretherketonepeekpatientspecificimplantsfororbitalwallreconstruction
AT welkerdennis multicriteriaassessmentstrategyfor3dprintedporouspolyetheretherketonepeekpatientspecificimplantsfororbitalwallreconstruction
AT aghlmandisoheila multicriteriaassessmentstrategyfor3dprintedporouspolyetheretherketonepeekpatientspecificimplantsfororbitalwallreconstruction
AT maintzmichaela multicriteriaassessmentstrategyfor3dprintedporouspolyetheretherketonepeekpatientspecificimplantsfororbitalwallreconstruction
AT zeilhoferhansflorian multicriteriaassessmentstrategyfor3dprintedporouspolyetheretherketonepeekpatientspecificimplantsfororbitalwallreconstruction
AT honigmannphilipp multicriteriaassessmentstrategyfor3dprintedporouspolyetheretherketonepeekpatientspecificimplantsfororbitalwallreconstruction
AT seifertthomas multicriteriaassessmentstrategyfor3dprintedporouspolyetheretherketonepeekpatientspecificimplantsfororbitalwallreconstruction
AT thieringerflorianm multicriteriaassessmentstrategyfor3dprintedporouspolyetheretherketonepeekpatientspecificimplantsfororbitalwallreconstruction