Cargando…
Percolation Theory Reveals Biophysical Properties of Virus-like Particles
[Image: see text] The viral protein containers that encapsulate a virus’ genetic material are repurposed as virus-like particles in a host of nanotechnology applications, including cargo delivery, storage, catalysis, and vaccination. These viral architectures have evolved to sit on the knife’s edge...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American
Chemical Society
2021
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8397427/ https://www.ncbi.nlm.nih.gov/pubmed/34296852 http://dx.doi.org/10.1021/acsnano.1c01882 |
_version_ | 1783744612747182080 |
---|---|
author | Brunk, Nicholas E. Twarock, Reidun |
author_facet | Brunk, Nicholas E. Twarock, Reidun |
author_sort | Brunk, Nicholas E. |
collection | PubMed |
description | [Image: see text] The viral protein containers that encapsulate a virus’ genetic material are repurposed as virus-like particles in a host of nanotechnology applications, including cargo delivery, storage, catalysis, and vaccination. These viral architectures have evolved to sit on the knife’s edge between stability, to provide adequate protection for their genetic cargoes, and instability, to enable their efficient and timely release in the host cell environment upon environmental cues. By introducing a percolation theory for viral capsids, we demonstrate that the geometric characteristics of a viral capsid in terms of its subunit layout and intersubunit interaction network are key for its disassembly behavior. A comparative analysis of all alternative homogeneously tiled capsid structures of the same stoichiometry identifies evolutionary drivers favoring specific viral geometries in nature and offers a guide for virus-like particle design in nanotechnology. |
format | Online Article Text |
id | pubmed-8397427 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | American
Chemical Society |
record_format | MEDLINE/PubMed |
spelling | pubmed-83974272021-08-31 Percolation Theory Reveals Biophysical Properties of Virus-like Particles Brunk, Nicholas E. Twarock, Reidun ACS Nano [Image: see text] The viral protein containers that encapsulate a virus’ genetic material are repurposed as virus-like particles in a host of nanotechnology applications, including cargo delivery, storage, catalysis, and vaccination. These viral architectures have evolved to sit on the knife’s edge between stability, to provide adequate protection for their genetic cargoes, and instability, to enable their efficient and timely release in the host cell environment upon environmental cues. By introducing a percolation theory for viral capsids, we demonstrate that the geometric characteristics of a viral capsid in terms of its subunit layout and intersubunit interaction network are key for its disassembly behavior. A comparative analysis of all alternative homogeneously tiled capsid structures of the same stoichiometry identifies evolutionary drivers favoring specific viral geometries in nature and offers a guide for virus-like particle design in nanotechnology. American Chemical Society 2021-07-23 2021-08-24 /pmc/articles/PMC8397427/ /pubmed/34296852 http://dx.doi.org/10.1021/acsnano.1c01882 Text en © 2021 The Authors. Published by American Chemical Society https://creativecommons.org/licenses/by/4.0/Permits the broadest form of re-use including for commercial purposes, provided that author attribution and integrity are maintained (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Brunk, Nicholas E. Twarock, Reidun Percolation Theory Reveals Biophysical Properties of Virus-like Particles |
title | Percolation
Theory Reveals Biophysical Properties
of Virus-like Particles |
title_full | Percolation
Theory Reveals Biophysical Properties
of Virus-like Particles |
title_fullStr | Percolation
Theory Reveals Biophysical Properties
of Virus-like Particles |
title_full_unstemmed | Percolation
Theory Reveals Biophysical Properties
of Virus-like Particles |
title_short | Percolation
Theory Reveals Biophysical Properties
of Virus-like Particles |
title_sort | percolation
theory reveals biophysical properties
of virus-like particles |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8397427/ https://www.ncbi.nlm.nih.gov/pubmed/34296852 http://dx.doi.org/10.1021/acsnano.1c01882 |
work_keys_str_mv | AT brunknicholase percolationtheoryrevealsbiophysicalpropertiesofviruslikeparticles AT twarockreidun percolationtheoryrevealsbiophysicalpropertiesofviruslikeparticles |