Cargando…

Lactate Biosensing for Reliable On-Body Sweat Analysis

[Image: see text] Wearable lactate sensors for sweat analysis are highly appealing for both the sports and healthcare fields. Electrochemical biosensing is the approach most widely used for lactate determination, and this technology generally demonstrates a linear range of response far below the exp...

Descripción completa

Detalles Bibliográficos
Autores principales: Xuan, Xing, Pérez-Ràfols, Clara, Chen, Chen, Cuartero, Maria, Crespo, Gaston A.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Chemical Society 2021
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8397467/
https://www.ncbi.nlm.nih.gov/pubmed/34228919
http://dx.doi.org/10.1021/acssensors.1c01009
_version_ 1783744621996670976
author Xuan, Xing
Pérez-Ràfols, Clara
Chen, Chen
Cuartero, Maria
Crespo, Gaston A.
author_facet Xuan, Xing
Pérez-Ràfols, Clara
Chen, Chen
Cuartero, Maria
Crespo, Gaston A.
author_sort Xuan, Xing
collection PubMed
description [Image: see text] Wearable lactate sensors for sweat analysis are highly appealing for both the sports and healthcare fields. Electrochemical biosensing is the approach most widely used for lactate determination, and this technology generally demonstrates a linear range of response far below the expected lactate levels in sweat together with a high influence of pH and temperature. In this work, we present a novel analytical strategy based on the restriction of the lactate flux that reaches the enzyme lactate oxidase, which is immobilized in the biosensor core. This is accomplished by means of an outer plasticized polymeric layer containing the quaternary salt tetradodecylammonium tetrakis(4-chlorophenyl) borate (traditionally known as ETH500). Also, this layer prevents the enzyme from being in direct contact with the sample, and hence, any influence with the pH and temperature is dramatically reduced. An expanded limit of detection in the millimolar range (from 1 to 50 mM) is demonstrated with this new biosensor, in addition to an acceptable response time; appropriate repeatability, reproducibility, and reversibility (variations lower than 5% for the sensitivity); good resiliency; excellent selectivity; low drift; negligible influence of the flow rate; and extraordinary correlation (Pearson coefficient of 0.97) with a standardized method for lactate detection such as ion chromatography (through analysis of 22 sweat samples collected from 6 different subjects performing cycling or running). The developed lactate biosensor is suitable for on-body sweat lactate monitoring via a microfluidic epidermal patch additionally containing pH and temperature sensors. This applicability was demonstrated in three different body locations (forehead, thigh, and back) in a total of five on-body tests while cycling, achieving appropriate performance and validation. Moreover, the epidermal patch for lactate sensing is convenient for the analysis of sweat stimulated by iontophoresis in the subjects’ arm, which is of great potential toward healthcare applications.
format Online
Article
Text
id pubmed-8397467
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher American Chemical Society
record_format MEDLINE/PubMed
spelling pubmed-83974672021-08-31 Lactate Biosensing for Reliable On-Body Sweat Analysis Xuan, Xing Pérez-Ràfols, Clara Chen, Chen Cuartero, Maria Crespo, Gaston A. ACS Sens [Image: see text] Wearable lactate sensors for sweat analysis are highly appealing for both the sports and healthcare fields. Electrochemical biosensing is the approach most widely used for lactate determination, and this technology generally demonstrates a linear range of response far below the expected lactate levels in sweat together with a high influence of pH and temperature. In this work, we present a novel analytical strategy based on the restriction of the lactate flux that reaches the enzyme lactate oxidase, which is immobilized in the biosensor core. This is accomplished by means of an outer plasticized polymeric layer containing the quaternary salt tetradodecylammonium tetrakis(4-chlorophenyl) borate (traditionally known as ETH500). Also, this layer prevents the enzyme from being in direct contact with the sample, and hence, any influence with the pH and temperature is dramatically reduced. An expanded limit of detection in the millimolar range (from 1 to 50 mM) is demonstrated with this new biosensor, in addition to an acceptable response time; appropriate repeatability, reproducibility, and reversibility (variations lower than 5% for the sensitivity); good resiliency; excellent selectivity; low drift; negligible influence of the flow rate; and extraordinary correlation (Pearson coefficient of 0.97) with a standardized method for lactate detection such as ion chromatography (through analysis of 22 sweat samples collected from 6 different subjects performing cycling or running). The developed lactate biosensor is suitable for on-body sweat lactate monitoring via a microfluidic epidermal patch additionally containing pH and temperature sensors. This applicability was demonstrated in three different body locations (forehead, thigh, and back) in a total of five on-body tests while cycling, achieving appropriate performance and validation. Moreover, the epidermal patch for lactate sensing is convenient for the analysis of sweat stimulated by iontophoresis in the subjects’ arm, which is of great potential toward healthcare applications. American Chemical Society 2021-07-06 2021-07-23 /pmc/articles/PMC8397467/ /pubmed/34228919 http://dx.doi.org/10.1021/acssensors.1c01009 Text en © 2021 The Authors. Published by American Chemical Society https://creativecommons.org/licenses/by/4.0/Permits the broadest form of re-use including for commercial purposes, provided that author attribution and integrity are maintained (https://creativecommons.org/licenses/by/4.0/).
spellingShingle Xuan, Xing
Pérez-Ràfols, Clara
Chen, Chen
Cuartero, Maria
Crespo, Gaston A.
Lactate Biosensing for Reliable On-Body Sweat Analysis
title Lactate Biosensing for Reliable On-Body Sweat Analysis
title_full Lactate Biosensing for Reliable On-Body Sweat Analysis
title_fullStr Lactate Biosensing for Reliable On-Body Sweat Analysis
title_full_unstemmed Lactate Biosensing for Reliable On-Body Sweat Analysis
title_short Lactate Biosensing for Reliable On-Body Sweat Analysis
title_sort lactate biosensing for reliable on-body sweat analysis
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8397467/
https://www.ncbi.nlm.nih.gov/pubmed/34228919
http://dx.doi.org/10.1021/acssensors.1c01009
work_keys_str_mv AT xuanxing lactatebiosensingforreliableonbodysweatanalysis
AT perezrafolsclara lactatebiosensingforreliableonbodysweatanalysis
AT chenchen lactatebiosensingforreliableonbodysweatanalysis
AT cuarteromaria lactatebiosensingforreliableonbodysweatanalysis
AT crespogastona lactatebiosensingforreliableonbodysweatanalysis