Cargando…
Artificial Intelligence Analysis of Mandibular Movements Enables Accurate Detection of Phasic Sleep Bruxism in OSA Patients: A Pilot Study
PURPOSE: Sleep bruxism (SBx) activity is classically identified by capturing masseter and/or temporalis masticatory muscles electromyographic activity (EMG-MMA) during in-laboratory polysomnography (PSG). We aimed to identify stereotypical mandibular jaw movements (MJM) in patients with SBx and to d...
Autores principales: | Martinot, Jean-Benoit, Le-Dong, Nhat-Nam, Cuthbert, Valérie, Denison, Stéphane, Gozal, David, Lavigne, Gilles, Pépin, Jean-Louis |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Dove
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8397703/ https://www.ncbi.nlm.nih.gov/pubmed/34466045 http://dx.doi.org/10.2147/NSS.S320664 |
Ejemplares similares
-
Mandibular Movements As Accurate Reporters of Respiratory Effort during Sleep: Validation against Diaphragmatic Electromyography
por: Martinot, Jean-Benoît, et al.
Publicado: (2017) -
Respiratory Mandibular Movement Signals Reliably Identify Obstructive Hypopnea Events During Sleep
por: Martinot, Jean-Benoit, et al.
Publicado: (2019) -
Assessment of Mandibular Movement Monitoring With Machine Learning Analysis for the Diagnosis of Obstructive Sleep Apnea
por: Pépin, Jean-Louis, et al.
Publicado: (2020) -
Monitoring mandibular movements to detect Cheyne-Stokes Breathing
por: Martinot, Jean-Benoît, et al.
Publicado: (2017) -
Machine Learning–based Sleep Staging in Patients with Sleep Apnea Using a Single Mandibular Movement Signal
por: Le-Dong, Nhat-Nam, et al.
Publicado: (2021)